Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (1): 138-150.doi: 10.3724/SP.J.1006.2022.03072

Previous Articles     Next Articles

Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize

YU Rui-Su1(), TIAN Xiao-Kang1, LIU Bin-Bin1, DUAN Ying-Xin1, LI Ting1, ZHANG Xiu-Ying2, ZHANG Xing-Hua1, HAO Yin-Chuan1, LI Qin2, XUE Ji-Quan1,*(), XU Shu-Tu1,*()   

  1. 1Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest Agriculture and Technology University, Yangling 712100, Shaanxi, China
    2Hanzhong Institute of Agricultural Sciences, Hanzhong 723000, Shaanxi China
  • Received:2020-12-10 Accepted:2021-04-14 Online:2022-01-12 Published:2021-06-18
  • Contact: XUE Ji-Quan,XU Shu-Tu E-mail:1169390776@qq.com;xjq2934@163.com;Shutuxu@nwafu.edu.cn
  • Supported by:
    Seven Major Crop Breeding Projects of the National Key Research and Development Program of China(2018YFD0100203);China Agriculture Research System (Maize).(CARS-02-64)

Abstract:

Lodging is one of the main factors affecting the grain yield and mechanized harvesting in maize. Dissecting the genetic basis of lodging related traits can provide a theoretical basis for high yield and mechanized harvest breeding of maize. In this study, genome-wide association study (GWAS) and linkage analysis were combined to identify the significant loci interrelated with lodging related traits using 153 inbred lines from China and abroad. We detected 5, 14, 16, and 21 SNPs significant SNPs related to stem strength, plant height, ear height, and ear height-to-plant height ratio, respectively. Among these significant SNPs, the maximum effect value of a single site was 13.24. Twenty-one QTLs related to lodging related traits were identified by linkage analysis, which explaining the phenotypic variations of 3.86%-16.58% in F5 population constructed by KA105 and KB020. Further, we noticed that two QTL intervals were coincided with the candidate intervals of association analysis. Finally, GRMZM2G105391, GRMZM2G014119, and GRMZM2G341410 candidate genes related to cell wall biosynthesis, cell division and elongation were predicted by functional annotation for these candidate regions. These results can provide a new reference for further analysis of the genetic basis of lodging resistance in maize.

Key words: maize, lodging, association analysis, linkage analysis

Table 1

Basic description of lodging resistance related traits in AM153 population"

性状
Trait
年份
Year
范围
Range
平均值±标准差
Mean±SD
偏度
Skewness
峰度
Kurtosis
变异系数
CV (%)
茎秆强度 2018 32.99-66.23 50.21±6.24 0.12 -0.01 12.43
SS 2019 33.34-72.28 53.3±7.57 -0.08 -0.17 14.20
SS-BLUP 43.74-60.62 52.04±3.32 0.24 0.13 6.38
株高 2018 170.30-280.70 221.92±23.11 0.28 -0.37 10.41
PH 2019 143.00-252.20 200.99±21.56 0.13 -0.42 10.73
PH-BLUP 160.99-277.91 212.22±20.14 0.41 0.12 9.49
穗位高 2018 48.00-108.30 79.73±12.58 -0.21 -0.28 15.78
EH 2019 49.00-108.30 70.95±9.69 0.3 0.79 13.66
EH-BLUP 53.08-110.48 75.88±9.82 0.38 0.98 12.94
穗位系数 2018 0.26-0.53 0.40±0.05 0.31 0.98 12.41
EH/PH 2019 0.25-0.47 0.35±0.04 0.4 0.82 10.47
EH/PH-BLUP 0.28-0.46 0.35±0.03 0.5 0.87 9.49

Table 2

Variance analysis of lodging resistance related traits in the AM153 population"

变异
Variation
茎秆强度SS 株高PH 穗位高EH 穗位系数EH/PH
MS F MS F MS F MS F
基因型Genotypes (G) 119.15 2.24*** 1756.59 16.72*** 401.50 10.49*** 0.005 8.90***
年份Year 1430.55 26.24*** 65,572.72 624.12*** 12,290.33 321.08*** 0.007 12.06***
基因型×年份G×Year 63.29 1.19 221.13 2.10*** 77.43 2.02*** 0.001 1.81***
误差Error 53.14 105.06 38.28 0.001
遗传力H2 (%) 72.62 92.77 89.26 86.96

Fig. 1

Correlation analysis of lodging resistance related traits in AM153 population (A) and F5 population (B) *, **, and *** indicate significant difference at P < 0.05, P < 0.01, and P < 0.001; 18 and 19 represent the year of 2018 and 2019, respectively; YU and HZ represent the experimental plot of Yulin and Hanzhong, respectively. Abbreviations are the same as those given in Table 1."

Fig. 2

Distribution of significant SNPs in lodging resistance related traits Abbreviations are the same as those given in Table 1."

Table 3

Correlated SNP with lodging resistance related traits"

SNP序号 染色体 位置 候选区间 -log10 (P) 效应值 性状
SNP ID Chr. Position Candidate interval Effect Trait
SNP372 1 7,693,562 7,493,562-7,893,562 4.29 10.08 19EH, 19PH
SNP524 1 10,449,649 10,249,649-10,649,649 3.41 4.87 18EH, 18PH
SNP3638 1 84,326,155 84,126,155-84,526,155 4.81 -1.48 18SS, SS-BLUP
SNP6691 1 205,781,890 205,581,890-205,981,890 3.73 -0.01 19EH/PH, EH/PH-BLUP
SNP8730 1 253,324,984 253,124,984-253,524,984 3.28 7.56 19PH, PH-BLUP
SNP11723 2 13,290,858 13,090,858-13,490,858 3.59 9.47 19EH, 19PH
SNP13557 2 53,646,990 53,446,990-53,846,990 3.06 -5.12 18EH, 19EH
SNP19390 2 233,508,755 233,308,755-233,708,755 3.31 8.17 18PH,19PH
SNP20574 3 18,803,909 18,603,909-19,003,909 3.58 -0.02 19EH/PH, EH/PH-BLUP
SNP20816 3 24,476,830 24,276,830-24,676,830 4.23 3.99 19SS, SS-BLUP
SNP24414 3 155,835,074 155,635,074-156,035,074 4.18 -0.02 19EH/PH,19EH
SNP28310 4 10,227,629 10,027,629-10,427,629 4.72 4.48 18PH, 19PH, PH-BLUP
SNP29286 4 33,460,646 33,260,646-33,660,646 3.07 -9.27 19PH, PH-BLUP
SNP29306 4 33,912,195 33,712,195-34,112,195 4.23 -13.25 19PH, 19EH
SNP29662 4 43,179,107 42,979,107-43,379,107 3.06 7.25 19PH, 19EH
SNP30918 4 107,290,607 107,090,607-107,490,607 3.82 -0.04 19EH/PH, EH/PH-BLUP
SNP36977 5 27,793,091 27,593,091-27,993,091 3.50 -0.01 19EH/PH, EH/PH-BLUP
SNP37167 5 32,584,178 32,384,178-32,784,178 3.26 -0.02 19EH/PH, EH/PH-BLUP
SNP38017 5 61,705,387 61,505,387-61,905,387 4.11 -0.02 19EH/PH, EH/PH-BLUP
SNP38046 5 62,710,291 62,510,291-62,910,291 3.28 -0.02 19EH/PH, EH/PH-BLUP
SNP38174 5 68,434,295 68,234,295-68,634,295 4.32 -0.01 19EH/PH, EH/PH-BLUP
SNP38176 5 68,449,337 68,249,337-68,649,337 4.37 -0.01 19EH/PH, EH/PH-BLUP
SNP38400 5 78,025,941 77,825,941-78,225,941 3.62 -0.01 19EH/PH, EH/PH-BLUP
SNP39705 5 141,210,709 141,010,709-141,410,709 3.20 0.01 19EH/PH, EH/PH-BLUP
SNP40214 5 157,008,514 156,808,514-157,208,514 3.38 2.89 19SS, SS-BLUP
SNP40603 5 167,979,920 167,779,920-168,179,920 3.44 -0.01 19EH/PH, EH/PH-BLUP
SNP44092 6 45,709,401 45,509,401-45,909,401 3.22 -4.54 18EH, 18PH
SNP45353 6 96,088,816 95,888,816-96,288,816 3.40 3.70 19EH, EH-BLUP
SNP48778 7 1,222,716 1,022,716-1,422,716 3.02 -8.07 19EH, 19PH
SNP49397 7 14,735,621 14,535,621-14,935,621 3.99 2.30 18SS, SS-BLUP
SNP50621 7 75,380,048 75,180,048-75,580,048 6.01 2.00 18SS, SS-BLUP
SNP54911 8 13,140,414 12,940,414-13,340,414 3.41 -0.01 19EH/PH, EH/PH-BLUP
SNP56153 8 70,742,498 70,542,498-70,942,498 4.30 -0.03 19EH/PH, EH/PH-BLUP
SNP57890 8 129,488,487 129,288,487-129,688,487 4.14 -9.73 18EH, 19EH, EH-BLUP
18PH, 19PH, PH-BLUP
SNP58030 8 133,307,178 133,107,178-133,507,178 4.78 -6.36 18EH, 19EH, 19PH
SNP58106 8 135,487,306 135,287,306-135,687,306 3.46 0.01 19EH/PH, EH/PH-BLUP
SNP58751 8 152,898,327 152,698,327-153,098,327 4.62 0.02 18EH/PH, EH/PH-BLUP
SNP59767 8 172,230,824 172,030,824-172,430,824 3.83 4.61 19EH,19PH
SNP59786 8 172,434,870 172,234,870-172,634,870 3.23 0.01 18EH, EH/PH-BLUP
SNP62666 9 89,001,322 88,801,322-89,201,322 3.28 -0.01 19EH/PH, EH/PH-BLUP
SNP62670 9 89,192,523 88,992,523-89,392,523 3.46 -0.02 19EH/PH, EH/PH-BLUP
SNP62676 9 89,529,835 89,329,835-89,729,835 3.73 -0.01 19EH/PH, EH/PH-BLUP
SNP62844 9 93,667,191 93,467,191-93,867,191 3.13 4.19 18EH, 19EH
SNP64186 9 129,539,571 129,339,571-129,739,571 3.26 3.90 18EH, 19EH

Table 4

Basic description of lodging resistance related traits in F5 population"

性状
Trait
环境
Environment
亲本 Parents RILs群体 RILs population
KA105 KB020 范围
Range
平均数±标准差
Mean±SD
偏度
Skewness
峰度
Kurtosis
变异系数
CV (%)
茎秆强度 YU 55.78 b 63.30 a 30.44-74.01 53.24±8.32 -0.20 0.02 15.62
SS HZ 47.96 51.41 35.09-65.69 49.92±6.33 -0.11 -0.35 12.68
BLUP 51.87 b 57.35 a 29.33-62.81 51.28±4.51 -0.14 -0.07 8.79
株高 YU 223.90 234.70 159.90-275.10 222.37±28.25 -0.23 -0.29 12.70
EH HZ 201.10 b 254.44 a 145.20-300.00 217.86±24.03 -0.38 1.09 11.03
BLUP 213.00 b 244.54 a 158.90-281.24 219.78±21.95 -0.16 -0.10 9.99
穗位高 YU 65.70 62.60 38.50-94.80 72.60±10.98 -0.11 -0.42 15.12
PH HZ 58.80 b 76.67 a 42.50-96.50 68.15±11.51 -0.08 -0.39 16.88
BLUP 62.25 b 69.82 a 49.63-90.21 70.30±9.05 -0.11 -0.54 12.88
穗位系数 YU 0.29 0.26 0.22-0.45 0.33±0.03 -0.01 0.92 10.17
EH/PH HZ 0.29 0.30 0.20-0.43 0.31±0.03 0.01 0.55 12.35
BLUP 0.29 b 0.27 a 0.23-0.42 0.31±0.03 0.09 0.79 8.50

Table 5

Analysis of variance of lodging resistance related traits in F5 population"

变异 茎秆强度SS 株高PH 穗位高EH 穗位系数EH/PH
Variation MS F MS F MS F MS F
基因型 Genotype (G) 157.78 4.96*** 2429.31 11.75*** 431.22 11.75*** 0.004 2.64***
环境 Environment (E) 3748.35 117.72*** 5380.57 26.03*** 4153.35 26.03*** 0.150 95.67***
基因型×环境 G×E 46.94 1.47*** 274.35 1.33** 64.73 1.32* 0.003 1.85***
误差 Error 31.84 206.70 52.48 0.002
遗传力 H2 (%) 83.40 92.80 90.50 66.67

Fig. 3

Distribution of QTLs of lodging resistance traits Abbreviations are the same as those given in Table 1 and Figure 1."

Table 6

QTL mapping for lodging resistance related traits in F5 population"

性状 QTL 染色体 左翼标记 右翼标记 环境 LOD 贡献率 加性效应
Trait Chr. Left marker Right marker Environment R2 (%) Add
茎秆强度 qSS5-1 5 5_140763773 5_140763857 YU 4.22 9.12 2.46
SS qSS5-2 5 5_156167500 5_157012388 BLUP 10.35 16.58 2.02
qSS5-3 5 5_158723309 5_159130066 HZ 7.66 9.99 2.39
qSS5-4 5 5_178122149 5_179051498 HZ 4.14 5.22 -1.73
qSS5-5 5 5_144226809 5_181226757 BLUP 3.59 5.52 -1.19
qSS5-6 5 5_199338390 5_199672364 HZ 4.38 5.53 1.81
qSS6 6 6_67861806 6_68984948 YU 4.24 9.05 -2.47
BLUP 3.43 5.05 -1.13
株高 qPH1-1 1 1_112646044 1_115306380 YU 24.56 9.40 18.83
PH qPH1-2 1 1_120199828 1_160600750 YU 36.96 16.53 -25.07
BLUP 6.25 5.31 -6.36
qPH2-1 2 2_9013265 2_10394566 HZ 3.97 4.46 -5.66
qPH2-2 2 2_18731394 2_19945073 BLUP 5.16 4.32 -5.70
性状 QTL 染色体 左翼标记 右翼标记 环境 LOD 贡献率 加性效应
Trait Chr. Left marker Right marker Environment R2 (%) Add
qPH5-1 5 5_135497925 5_135725252 BLUP 5.39 4.52 -5.80
qPH5-2 5 5_164963962 5_166327830 BLUP 10.49 9.44 8.40
qPH5-3 5 5_1683956 5_1727799 HZ 3.45 3.86 -5.27
qPH6 6 6_68984948 6_128701322 HZ 5.16 7.94 -7.65
YU 12.43 4.83 -13.55
BLUP 11.76 11.63 -9.44
qPH7 7 7_11482224 7_14968823 BLUP 4.78 4.04 5.50
穗位高 qEH1 1 1_107294393 1_109785426 HZ 4.88 9.07 -3.58
EH YU 5.33 5.96 -3.06
BLUP 7.16 10.16 -3.11
qEH2 2 2_190284923 2_192872800 YU 4.81 5.39 -2.90
qEH6-1 6 6_68984948 6_128701322 YU 7.56 11.33 -4.25
qEH6-2 6 6_112247546 6_117497921 BLUP 3.65 5.00 -2.18
qEH10 10 10_13473790 10_18247431 YU 4.02 4.49 2.66
BLUP 3.65 5.05 2.20
[1] 黄璐, 乔江方, 刘京宝, 夏来坤, 朱卫红, 李川, 周庆伟. 夏玉米不同密植群体抗倒性及机收指标探讨. 华北农学报, 2015, 30:198-201.
Huang L, Qiao J F, Liu J B, Xia L K, Zhu W H, Li C, Zhou Q W. Research on the relationship between maize lodging resistance and grain mechanically harvesting qualities in different planting density. Acta Agric Boreali-Sin, 2015, 30:198-201 (in Chinese with English abstract).
[2] 曹铁华, 梁烜赫, 李刚, 任军, 王洪君, 陈宝玉, 王立春. 玉米倒伏和扶直的产量效应研究. 玉米科学, 2013, 21(6):81-83.
Cao T H, Liang X H, Li G, Ren J, Wang H J, Chen B Y, Wang L C. Yield effect of lodging and lifting up in maize after being attacked in Jilin province. J Maize Sci, 2013, 21(6):81-83 (in Chinese with English abstract).
[3] Xue J, Xie R Z, Zhang W F, Wang K R, Hou P, Ming B, Gou L, Li S K. Research progress on reduced lodging of high-yield and -density maize. J Integr Agric, 2017, 16:2717-2725.
[4] Sheri A M, Larry L D, Bruce E H. Divergent selection for rind penetrometer resistance and its effects on European corn borer damage and stalk traits in corn. Crop Sci, 2004, 44:711-717.
[5] 李凯, 张晓祥, 管中荣, 沈亚欧, 潘光堂. 玉米株高和穗位高的全基因组关联分析. 玉米科学, 2017, 25:1-7.
Li K, Zhang X X, Guan Z R, Shen Y O, Pan G T. Genome-wide association analysis of plant height and ear height in maize. J Maize Sci, 2017, 25:1-7 (in Chinese with English abstract).
[6] Zuber M S, Grogan C O. A new technique for measuring stalk strength in corn. Crop Sci, 1961, 1:378-380.
[7] 薛军, 王克如, 谢瑞芝, 勾玲, 张旺锋, 明博, 侯鹏, 李少昆. 玉米生长后期倒伏研究进展. 中国农业科学, 2018, 51:1845-1854.
Xue J, Wang K R, Xie R Z, Gou L, Zhang W F, Ming B, Hou P, Li S K. Research progress of maize lodging during late stage. Sci Agric Sin, 2018, 51:1845-1854 (in Chinese with English abstract)
[8] 耿爱军, 杨建宁, 张兆磊, 张姬, 李汝莘. 国内外玉米收获机械发展现状及展望. 农机化研究, 2016, 38:251-257.
Geng A J, Yang J N, Zhang Z L, Zhang J, Li R S. Discuss about the current situation and future of corn harvest machinery about domestic and abroad. J Agric Mech Res, 2016, 38:251-257 (in Chinese with English abstract)
[9] 王永学, 张战辉, 刘宗华. 玉米抗倒伏性状的配合力效应及通径分析. 河南农业大学学报, 2011, 45(1):1-6.
Wang Y X, Zhang Z H, Liu Z H. Combining ability and path analysis of lodging resistance traits in maize. J Henan Agric Univ, 2011, 45(1):1-6 (in Chinese with English abstract).
[10] 李清超, 李永祥, 杨钊钊, 刘成, 刘志斋, 李春辉, 彭勃, 张岩, 王迪, 谭巍巍, 孙宝成, 石云素, 宋燕春, 张志明, 潘光堂, 黎裕, 王天宇. 基于多重相关RIL群体的玉米株高和穗位高QTL定位. 作物学报, 2013, 39:1521-1529.
Li Q C, Li Y X, Yang Z Z, Liu C, Liu Z Z, Li C H, Peng B, Zhang Y, Wang D, Tan W W, Sun B C, Shi Y S, Song Y C, Zhang Z M, Pan G T, Wang T Y, Li Y. QTL mapping for plant height and ear height by using multiple related RIL populations in maize. Acta Agron Sin, 2013, 39:1521-1529 (in Chinese with English abstract).
[11] Haixiao H, Yujie M, Hongwu W, Hai L, Shaojiang C. Identifying quantitative trait loci and determining closely related stalk traits for rind penetrometer resistance in a high-oil maize population. Theor Appl Genet 2012, 124:1439-1447.
[12] 靳英杰, 李鸿萍, 安盼盼, 程思贤, 赵向阳, 余天雨, 李潮海. 玉米抗倒性研究进展. 玉米科学, 2019, 27(2):94-98.
Jin Y J, Li H P, An P P, Cheng S X, Zhao X Y, Yu T Y, Li C H. Research progress on the lodging resistance of maize. J Maize Sci, 2019, 27(2):94-98 (in Chinese with English abstract).
[13] Li X, Zhou Z, Ding J, Wu Y, Zhou B, Wang R, Ma J, Wang S, Zhang X, Xia Z, Chen J, Wu J. Combined linkage and association mapping reveals QTL and candidate genes for plant and ear height in maize. Front Plant Sci, 2016, 7:833.
[14] Zhang Y, Liang T, Chen M, Zhang Y, Wang T, Lin H, Rong T, Zou C, Liu P, Lee M, Pan G, Shen Y, Lübberstedt T. Genetic dissection of stalk lodging-related traits using an IBM Syn10 DH population in maize across three environments (Zea mays L.). Mol Genet Genomics, 2019, 294:1277-1288.
[15] 刘敬贤, 黄亚群, 陈景堂, 祝丽英, 赵永锋, 郭晋杰. 基于高密度连锁图谱定位玉米株高QTL. 江苏农业科学, 2019, 47(13):38-41.
Liu J X, Huang Y Q, Chen J T, Zhu L Y, Zhao Y F, Guo J J. QTL mapping for plant height in maize based on high density linkage map. Jiangsu Agric Sci, 2019, 47(13):38-41 (in Chinese with English abstract).
[16] Henderson C R. General flexibility of linear model techniques for sire evaluation. J Dairy Sci, 1974, 57:963-972.
[17] Saghai M M, Biyashev R M, Yang G P, Zhang Q, Allard R W. Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc Natl Acad Sci USA, 1994, 91:5466-5470.
[18] Browning B L, Browning S R. Genotype imputation with millions of reference samples. Am J Hum Genet, 2016, 98:116-126.
[19] 徐云碧, 杨泉女, 郑洪建, 许彦芬, 桑志勤, 郭子锋, 彭海, 张丛, 蓝昊发, 王蕴波, 吴坤生, 陶家军, 张嘉楠. 靶向测序基因型检测(GBTS)技术及其应用. 中国农业科学, 2020, 53:2983-3004.
Xu Y B, Yang Q N, Zhang H J, Xu Y F, Sang Z Q, Guo Z F, Peng H, Zhang C, Lan H F, Wang Y B, Wu K S, Tao J J, Zhang J N. Genotyping by target sequencing (GBTS) and its applications. Sci Agric Sin, 2020, 53:2983-3004 (in Chinese with English abstract).
[20] Yang L, Li T, Liu BB, Li R R, Yu R S, Zhang X Y, Li Q, Xu S T, Xue J Q. Genetic analysis of ear-related traits under different pollination treatments in maize (Zea mays L.). Plant Breed, 2021, 140:211-222.
[21] Liu X, Huang M, Fan B, Buckler E S, Zhang Z. Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet, 2016, 12:1-24.
[22] Barrett J C, Fry B, Maller J, Daly M J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 2005, 21:263-265.
[23] Ueda Y, Frimpong F, Qi Y, Matthus E, Wu L, Höller S, Kraska T, Frei M. Genetic dissection of ozone tolerance in rice (Oryza sativa L.) by a genome-wide association study. J Exp Bot, 2015, 66:293-306.
[24] Wang Y, Chantreau M, Sibout R, Hawkins S. Plant cell wall lignification and monolignol metabolism. Front Plant Sci, 2013, 4:220.
[25] Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu Rev Plant Biol, 2003, 54:519-546.
[26] Baldacci C F, Le Roy J, Huss B, Lion C, Créach A, Spriet C, Duponchel L, Biot C, Baucher M, Hawkins S, Neutelings G. UDP-GLYCOSYLTRANSFERASE 72E3 plays a role in lignification of secondary cell walls in Arabidopsis. Int J Mol Sci, 2020, 21:6094.
[27] Pan Z Q, Kentsis A, Dias D C, Yamoah K, Wu K. Nedd8 on cullin: building an expressway to protein destruction. Oncogene, 2004, 23:1985-1997.
[28] Bostick M, Lochhead S R, Honda A, Palmer S, Callis J. Related to ubiquitin 1 and 2 are redundant and essential and regulate vegetative growth, auxin signaling, and ethylene production in Arabidopsis. Plant Cell, 2004, 16:2418-2432.
[29] Beló A, Zheng P, Luck S, Shen B, Meyer D J, Li B, Tingey S, Rafalski A. Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol Genet Genomics, 2008, 279:1-10.
[30] Li Q, Yang X, Xu S, Cai Y, Zhang D, Han Y, Li L, Zhang Z, Gao S, Li J, Yan J. Genome-wide association studies identified three independent polymorphisms associated with α-tocopherol content in maize kernels. PLoS One, 2012, 7:36807.
[31] Zhang Y, Cui M, Zhang J M, Zhang L, Li C L, Kan X, Sun Q, Deng D X, Yin Z T. Confirmation and fine mapping of a major QTL for aflatoxin resistance in maize using a combination of linkage and association mapping. Toxins, 2016, 8:258.
[32] Cui M, Jia B, Liu H, Kan X, Zhang Y, Zhou R, Li Z, Yang L, Deng D, Yin Z. Genetic mapping of the leaf number above the primary ear and its relationship with plant height and flowering time in maize. Front Plant Sci, 2017, 8:1437.
[33] Hu H, Meng Y, Wang H, Liu H, Chen S. Identifying quantitative trait loci and determining closely related stalk traits for rind penetrometer resistance in a high-oil maize population. Theor Appl Genet, 2012, 124:1439-1447.
[34] Krakowsky M D, Lee M, Coors J G. Quantitative trait loci for cell wall components in recombinant inbred lines of maize (Zea mays L.): II. Leaf sheath tissue. Theor Appl Genet, 2006, 112:717-726.
[35] Hu H, Liu W, Fu Z, Homann L, Technow F, Wang H, Song C, Li S, Melchinger A E, Chen S. QTL mapping of stalk bending strength in a recombinant inbred line maize population. Theor Appl Genet, 2013, 126:2257-2266.
[36] Barrière Y, Méchin V, Lefevre B, Maltese S. QTLs for agronomic and cell wall traits in a maize RIL progeny derived from a cross between an old Minnesota13 line and a modern Iodent line. Theor Appl Genet, 2012, 125:531-549.
[37] 张体付, 梁帅强, 吕远大, 蒋璐, 赵涵. 基于三重测交群体解析玉米株高与穗位高杂种优势QTL. 核农学报, 2017, 31:837-843.
Zhang T F, Liang S Q, Lyu Y D, Jiang L, Zhao H. QTL analysis of heterosis for plant height and ear position using triple testcross population in maize. J Nucl Agric Sci, 2017, 31:837-843 (in Chinese with English abstract).
[38] 李凯, 张晓祥, 管中荣, 沈亚欧, 潘光堂. 玉米株高和穗位高的全基因组关联分析. 玉米科学, 2017, 25(6):1-7.
Li K, Zhang X X, Guan Z R, Shen Y O, Pan G T. Genome-wide association analysis of plant height and ear height in maize. J Maize Sci, 2017, 25(6):1-7 (in Chinese with English abstract).
[39] Krakowsky M D, Lee M, Coors J G. Quantitative trait loci for cell-wall components in recombinant inbred lines of maize (Zea mays L.): I. Stalk tissue. Theor Appl Genet, 2005, 111:337-346.
[40] 何坤辉, 常立国, 崔婷婷, 渠建洲, 郭东伟, 徐淑兔, 张兴华, 张仁和, 薛吉全, 刘建超. 多环境下玉米株高和穗位高的QTL定位. 中国农业科学, 2016, 49:1443-1452.
He K H, Chang L G, Cui T T, Qu J Z, Guo D W, Xu S T, Zhang X H, Zhang R H, Xue J Q, Liu J C. Mapping QTL for plant height and ear height in maize under multi-environments. Sci Agric Sin, 2016, 49:1443-1452 (in Chinese with English abstract).
[41] Zhang Y, Liu P, Zhang X, Zheng Q, Chen M, Ge F, Li Z, Sun W, Guan Z, Liang T, Zheng Y, Tan X, Zou C, Peng H, Pan G, Shen Y. Multi-locus genome-wide association study reveals the genetic architecture of stalk lodging resistance-related traits in maize. Front Plant Sci, 2018, 9:611.
[42] Ku L, Zhang L, Tian Z, Guo S, Su H, Ren Z, Wang Z, Li G, Wang X, Zhu Y, Zhou J, Chen Y. Dissection of the genetic architecture underlying the plant density response by mapping plant height-related traits in maize (Zea mays L.). Mol Genet Genomics, 2015, 290:1223-1233.
[43] Cheng J, Wen S, Bie Z. Overexpression of hexose transporter CsHT3 increases cellulose content in cucumber fruit peduncle. Plant Physiol Biochem, 2019, 145:107-113.
[44] Ke S, Luan X, Liang J, Hung Y H, Hsieh T F, Zhang X Q. Rice OsPEX1, an extension-like protein, affects lignin biosynthesis and plant growth. Plant Mol Biol, 2019, 100:151-161.
[45] Ahmad K F, Engel C K, Privé G G. Crystal structure of the BTB domain from PLZF. Proc Natl Acad Sci USA, 1998, 95:12123-12128.
[46] Norberg M, Holmlund M, Nilsson O. The BLADE ON PETIOLE genes act redundantly to control the growth and development of lateral organs. Development, 2005, 132:2203-2213.
[47] Yu X C, Zhu S Y, Gao G F, Wang X J, Zhao R, Zou K Q, Wang X F, Zhang X Y, Wu F Q, Peng C C, Zhang D P. Expression of a grape calcium-dependent protein kinase ACPK1 in Arabidopsis thaliana promotes plant growth and confers abscisic acid-hypersensitivity in germination, post-germination growth, and stomatal movement. Plant Mol Biol, 2007, 64:531-538.
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[4] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[5] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[6] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[7] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[8] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[9] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[10] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[11] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[12] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[13] XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85.
[14] ZHAO Xue, ZHOU Shun-Li. Research progress on traits and assessment methods of stalk lodging resistance in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 15-26.
[15] LOU Hong-Xiang, JI Jian-Li, KUAI Jie, WANG Bo, XU Liang, LI Zhen, LIU Fang, HUANG Wei, LIU Shu-Yan, YIN Yu-Feng, WANG Jing, ZHOU Guang-Sheng. Effects of planting density on yield and lodging related characters of reciprocal hybrids in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(9): 1724-1740.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!