Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (9): 2180-2195.doi: 10.3724/SP.J.1006.2022.14159

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Mining harvest index loci based on QTL mapping and genome-wide association study in rapessed (Brassica napus L.)

ZHANG Chao1,2,3(), YANG Bo1,2, ZHANG Li-Yuan1,2, XIAO Zhong-Chun1,2, LIU Jing-Sen1,2, MA Jin-Qi1,2, LU Kun1,2, LI Jia-Na1,2,*()   

  1. 1. College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
    2. Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
    3. Oil Research Institute of Guizhou Province, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
  • Received:2021-09-01 Accepted:2022-01-05 Online:2022-09-12 Published:2022-03-16
  • Contact: LI Jia-Na E-mail:18083606406@163.com;ljn1950@swu.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2018YFD0100500);National Natural Science Foundation of China(31830067);National Natural Science Foundation of China(31871653);Project of Intellectual Base for Discipline Innovation in Colleges and Universities (111 Project)(B12006);Chongqing Graduate Student Research Innovation Project(CYB20102);Chongqing Graduate Student Research Innovation Project(CYS20124)

Abstract:

Harvest index (HI) is an important agronomic trait, and the HI of rapeseed (Brassica napus L.) remains much lowerer than that of other major crops, indicating there is large scope for improvement of this trait. It is important to explore the genetic mechanism of rapeseed harvest index for its genetic improvement. In this study, QTLs for HI using the 186 recombinant inbred lines (RIL) in the three environments (2016, 2017, and 2018) and best linear unbiased prediction (BLUP) were detected based on the high-density genetic linkage map. A total of 12 HI QTLs located on chromosomes A03, A05, A06, A07, A09, C04, and C05_random were detected, with the explained phenotypic variation of individual QTL range from 1.27% to 14.20%. GWAS for HI was performed using 588 resequencing natural populations established by our previous study. A total of 6 SNPs associated with HI were detected in three years (2016, 2017, and 2019) and BLUP, which located on chromosomes A09, C01, and C03. The S9_25882060 on chromosome A09 detected by the environment in 2019 overlapped with S9_25961704, and was close to S9_24834640 on chromosome A09 detected by the environment in 2016. In addition, 2016HI (S9_24834640) detected in 2016 was located in the interval region of q2017HI-9. Among these 18 loci, one locus was overlapped with reported HI-related QTLs, and six loci were contiguous to reported yield-related QTLs. Combining the results of transcriptome sequencing data of our laboratory, 36 primary candidate genes were selected and these genes involved in the photosynthesis, transmembrane transport, storage components synthesis, transcriptional regulation and so on. These results provide important theoretical basis for genetic improvement of HI in rapeseed.

Key words: Brassica napus, harvest index, GWAS, candidate genes

Table 1

Phenotypic variation of harvest index in RIL population and natural population"

材料
Material
环境
Environment
平均值±标准偏差
Mean±SD
范围
Range (%)
变异系数
CV (%)
父本中油821 Male parent Zhongyou 821 2016 17.68±0.95
2017 18.17±4.50
2018 19.68±0.68
母本GH06 Female parent GH06 2016 15.83±0.40
2017 13.06±1.04
2018 16.07±0.42
重组自交系 RIL 2016 20.57±3.29 11.87-32.83 16.01
2017 19.68±4.35 9.33-33.66 22.09
2018 18.50±2.81 9.05-24.02 15.17
BLUP 19.53±1.10 16.03-23.32 5.62
自然群体 NP 2016 17.99±4.35 6.44-29.08 24.18
2017 17.25±4.65 3.55-28.74 26.97
2019 23.14±4.94 5.64-32.73 21.35
BLUP 18.91±3.13 7.80-25.94 16.55

Table 2

Correlation coefficients of harvest index under different environments"

重组自交系 RIL 自然群体 NP
2016HI 2017HI 2018HI BLUP 2016HI 2017HI 2019HI BLUP
2016HI 1.000 2016HI 1.000
2017HI 0.354** 1.000 2017HI 0.571** 1.000
2018HI 0.269* 0.438** 1.000 2019HI 0.542** 0.594** 1.000
BLUP 0.698** 0.866** 0.733** 1.000 BLUP 0.798** 0.782** 0.800** 1.000

Fig. 1

Frequency distribution of harvest index in RIL an NP RIL: recombinant inbred line; NP: natural population; HI: harvest index; BLUP: best linear unbiased prediction."

Table 3

QTLs related to harvest index in B. napus"

位点
QTL
染色体
Chr.
加性效应
Additive effect
LOD阈值
LOD score
贡献率
R2 (%)
标记区间
SNP interval
物理区间
Physical position (bp)
q2016HI-6 A06 -0.9225 2.5258 7.74 SNP13605-SNP14257 2056287-2944745
q2016HI-7 A07 -1.1539 3.5976 11.18 SNP15424-SNP15485 14920316-15237451
q2016HI-14 C04 3.1475 3.5999 11.53 SNP27560-SNP27571 6005799-6099590
q2017HI-2 A07 -1.1705 2.9408 7.08 SNP3321-SNP3325 12808959-12813162
q2017HI-9 A09 -1.0928 2.7174 5.89 SNP20565-SNP20632 24170241-24935073
q2018HI-5-1 A05 -1.5749 6.0438 14.20 SNP12592-SNP12692 7315852-7543669
q2018HI-5-2 A05 -1.6657 5.2083 11.77 SNP12692-SNP12548 6778798-7543669
q2018HI-15-1 C05_random 0.7312 2.7726 1.27 SNP46328-SNP46308 1679049-1734366
q2018HI-15-2 C05_random 0.7312 2.7726 6.62 SNP46315-SNP46336 1731384-1749200
qBLUPHI-3 A03 -0.4181 3.1453 4.71 SNP5280-SNP5570 10372839-10458202
qBLUPHI-7-1 A07 0.4047 2.7985 5.49 SNP16354-SNP16358 21782147-21797231
qBLUPHI-7-2 A07 0.4000 2.7037 5.31 SNP16342-SNP16345 21687449-21719775

Fig. 2

Putative QTL locations of harvest index on the genetic map"

Fig. 3

Quantile-quantile plot for six models and Manhattan plots of association analysis using the optimal model for harvest index HI: harvest index; BLUP: best linear unbiased prediction."

Table 4

Markers with significant association for harvest index"

位点
Locus
染色体
Chr.
关联标记
Associate marker
物理位置
Physical position
贡献率
R2 (%)
阈值
-log10 (P)
最佳模型
Best model
2016HI A09 S9_24834640 24,834,640 11.26 5.60 K+Q
2017HI-1 C01 S11_17423943 17,423,943 5.84 5.92 K+Q
2017HI-2 C03 S13_10434536 10,434,536 6.55 5.72 K+Q
2019HI-1 A09 S9_25882060 25,882,060 6.20 5.87 K+PCA
2019HI-2 A09 S9_25961704 25,961,704 5.79 5.69 K+PCA
BLUP_HI C01 S11_28093591 28,093,591 6.36 5.76 K+Q

Table 5

Identification of candidate genes for harvest index"

位点
Locus
物理位置
Physical position
基因
Genes
拟南芥同源基因
Homologs in A. thaliana
功能注释
Functional annotation
q2016HI-6 chrA06: 2056287-2944745 BnaA06g04140D AT1G47960 细胞壁/液泡果糖转化酶的抑制剂,在拟南芥中调节脱落酸响应和耐盐性,在碳水化合物新陈代谢、胁迫响应和糖信号中具有重要作用。
Cell wall/vacuolar inhibitor of fructosidase 1 regulates ABA response and salt tolerance in Arabidopsis, plays important roles in carbohydrate metabolism, stress responses, and sugar signaling.
BnaA06g04150D AT4G29120 6磷酸葡糖糖酸脱氢酶蛋白家族,具有辅酶结合域、氧化还原酶活性、具有磷酸葡糖糖酸脱氢、结合、还原活性。
6-phosphogluconate dehydrogenase family protein possesses coenzyme binding, oxidoreductase activity, phosphogluconate dehydrogenase (decarboxylating) activity, binding, and catalytic activity.
BnaA06g04380D AT1G07890 细胞质APX1,在植物干旱和高温胁迫的适应中具有重要作用。
Cytosolic APX1 plays a key role in the acclimation of plants to a combination of drought and heat stress.
BnaA06g04820D AT1G08380 编码光系统I的O亚基。
Encodes subunit O of photosystem I.
BnaA06g05000D AT1G08630 苏氨酸醛羧酶,涉及降解苏氨酸生成甘氨酸。主要在种子和幼苗中表达。
Threonine aldolase involved in threonine degradation to glycine is primarily expressed in seeds and seedlings.
q2016HI-7 chrA07: 14920316-15237451 BnaA07g18730D AT3G60530 锌指结构转录因子中GATA家族。
GATA factor family of zinc finger transcription factors.
BnaA07g19140D AT3G62100 Aux/IAA蛋白家族,涉及生长素信号途径。促进体细胞胚胎化形成。
Aux/IAA family of proteins implicated in auxin signaling promotes somatic embryogenesis.
BnaA07g19330D AT3G62420 bZIP转录因子53,包含该蛋白的异源二聚体可显著增加种子成熟基因的转录。
The bZIP transcription factor 53 contains Heterodimers containing bZIP53 which participates in enhanceosome formation to produce a dramatic increase in seed maturation gene transcription.
q2016HI-14 chrC04:6005799-6099590 BnaC04g08090D AT2G37170 PIP2质膜镶嵌蛋白亚家族的一个成员。位于质膜上,在爪蟾卵细胞中具有水分转运活性。在维管束中特异表达且蛋白水平在叶片发育过程中显著增加。
A member of the plasma membrane intrinsic protein subfamily PIP2 localized to the plasma membrane exhibites water transport activity in Xenopus oocyte and expresses specifically in the vascular bundles and protein level increases slightly during leaf development.
BnaC04g08100D AT2G37170
q2018HI-5-2 chrA05: 6778798-7543669 BnaA05g11950D AT2G30490 突变该基因影响类苯丙烷的代谢,影响生长和发育。
Mutations in this gene impact phenylpropanoid metabolism, growth, and development.
BnaA05g12160D AT2G30250 WRKY转录因子。涉及响应各种非生物胁迫,特别是盐胁迫。
WRKY transcription Factor which involved in response to various abiotic stresses especially salt stress.
BnaA05g12180D AT2G30200 胚胎缺陷蛋白基因3147,细胞分裂必不可少并且超量表达该基因可增加储藏油脂含量。
Embryo defective 3147 is essential for cell division and its overexpression can increase the storage oil content.
BnaA05g12360D AT2G29980 内质网酶,负责将磷脂合成18:3脂肪酸。
Endoplasmic reticulum enzyme is responsible for the synthesis of 18:3 fatty acids from phospholipids.
BnaA05g12390D AT2G29650 编码位于类囊体膜上的无机磷酸盐转运蛋白PHT4;1。拟南芥中AtPHT4;1通过影响磷酸盐活性影响ATP合成和植物生长。
Encodes an inorganic phosphate transporter (PHT4;1) that is localized to the thylakoid membrane. AtPHT4;1 influences phosphate availability for ATP synthesis and plant growth.
BnaA05g12530D AT2G29500 编码热激蛋白,可以被非生物胁迫例如强光、活性氧、干旱等诱导。
Heat shock proteins encoded can be induced by abiotic stress such as high light, ROS, and drought.
qBLUPHI-3 chrA03: 10372839-10458202 BnaA03g22030D AT2G28840 通过降解热敏元件ELF3来调控热敏性下胚轴生长。侧根萌动所必须。
Regulates thermoresponsive hypocotyl growth through mediating degradation of the thermosensor ELF3. It is required for lateral root initiation.
qBLUPHI-7-2 chrA07: 21687449-21719775 BnaA07g30760D AT1G73260 丝氨酸蛋白酶(Kunitz型)抑制剂,在拟南芥中涉及调控植物病菌侵染的细胞程序性死亡。
Serine protease (Kunitz trypsin) inhibitor which is involved in modulating programmed cell death in plant-pathogen interactions in Arabidopsis.
2016HI
(q2017HI-9)
chrA09: 24334640-25334640 (chrA09:24170241-24935073) BnaA09g33290D AT3G52930 果糖二磷酸醛缩酶8,拟南芥中其突变会影响胚发育和淀粉合成。
Fructose-bisphosphate aldolase 8, mutations in this gene, impacts embryo development and starch biosynthesis in Arabidopsis.
BnaA09g33720D AT3G53420 过氧化氢的跨膜转运、响应水分缺失、跨膜转运、水分转运。
Hydrogen peroxide transmembrane transport, response to water deprivation, transmembrane transport, and water transport.
BnaA09g34460D AT3G54620 正调控种子成熟,正调控基因转录、DNA模板化。
Positive regulation of seed maturation, positive regulation of transcription, and DNA-templated.
2017HI-1 chrC01: 16923943-17923943 BnaC01g23350D AT3G51520 编码二酰甘油酰基辅酶A转移酶,具有不同骨架酰基辅酶A偏好性,比AtDGAT1将二酰甘油转化成二酰甘油的效率更高。可以在消耗C16:3的基础上增加C18:2和C18:3多不饱和脂肪酸。
Encodes a functional acyl-CoA:diacylglycerol acyltransferase with different acyl-CoA substrate preferences which has higher DAG to TAG conversion rate than AtDGAT1. It increases both C18:2 and C18:3 polyunsaturated fatty acids at the expense of C16:0.
BnaC01g23800D AT3G50820 编码光系统II的外来亚基,对维持具有催化活性的锰离子簇稳定性至关重要。在类囊体上光系统II中的PsbO2不仅对维持光系统II的功能起作用也对调节光系统I与光系统II的比率起作用。
Encodes a protein which is an extrinsic subunit of photosystem II and which has been proposed to play a central role in stabilization of the catalytic manganese cluster. The presence of PsbO2 isoform in the PSII centers has consequences not only to the function of PSII but also to the PSI/PSII ratio in thylakoids.
2017HI-2 chrC03: 9934536-10934536 BnaC03g19670D AT2G35860 类成束阿拉伯半乳聚糖蛋白16前体,在植物次生细胞壁的合成中具有重要作用并且可能涉及胚胎形成和种子发育。
FASCICLIN-like arabinogalactan protein 16 precursor (FLA16) plays a role in plant secondary cell wall synthesis and possibly involved in embryogenesis and seed development.
BnaC03g20550D AT2G37170 PIP2质膜镶嵌蛋白亚家族的一个成员。位于质膜上,在爪蟾卵细胞中具有水分转运活性。在维管束中特异表达且蛋白水平在叶片发育过程中显著增加。
A member of the plasma membrane intrinsic protein subfamily PIP2 which is localized to the plasma membrane has water transport activity in Xenopus oocyte and increases the expressed specifically in the vascular bundles and protein level increases slightly during leaf development.
2019HI-1 chrA09: 25382060-26382060 BnaA09g34720D AT3G54890 编码与光系统I相关的光收集复合体组件。
Encodes a component of the light harvesting complex associated with photosystem I.
BnaA09g34930D AT3G55360 涉及在超长链脂肪酸延长反应中烯脂酰的还原,为表皮蜡质、储藏油脂和鞘脂类代谢所必须。
Enoyl-CoA reductase is involved in all very long chain fatty acids (VLCFA) elongation reactions that are required for cuticular wax, storage lipid, and sphingolipid metabolism.
BnaA09g35240D AT3G55620 涉及在种子休眠过程中响应脱落酸刺激、调控胚胎发育的终止。
Cellular response is related with abscisic acid stimulus and embryo development ending in seed dormancy.
BnaA09g35380D AT3G55800 编码叶绿体酶景天庚酮糖-1,7-二磷酸酶,涉及卡尔文循环的碳还原。增加其活性的转基因株系比对照多积累了50%的蔗糖和淀粉。
The chloroplast enzyme sedoheptulose-1,7-bisphosphatase (SBPase), which involves in the carbon reduction of the Calvin cycle, increases in SBPase activity in transgenic lines accumulate up to 50% more sucrose and starch than wild-type.
BnaA09g35590D AT3G56130 负调控脂肪酸的合成过程。
Negative regulation of fatty acid biosynthetic process.
BnaA09g36130D AT3G56850 编码一个具有bZIP结构域的脱落酸响应元件结合蛋白。定位于细胞核中,在拟南芥种子成熟的胚中表达并涉及调控AtSUC1的表达。
An ABA-responsive element binding protein encodes with a bZIP domain located in the nucleus can regulate the expressed in the embryo during seed maturation and involved in the regulation of AtSUC1 expression in Arabidopsis.
BnaA09g36160D AT3G56860 涉及脱落酸活化信号途径、细胞死亡、防卫反应、乙烯合成过程、叶片衰老、mRNA的稳定化。
Involves abscisic acid-activated signaling pathway, cell death, defense response, ethylene biosynthetic process, leaf senescence, mRNA stabilization.
BnaA09g36180D AT3G56880 响应渗透胁迫、盐胁迫、水分缺失胁迫。
Response to osmotic stress, salt stress and water deprivation.
2019HI-2 chrA09: 25461704-26461704 BnaA09g36610D AT3G57260 响应冷胁迫、系统获得性抗性。
Response to cold, systemic acquired resistance.
BnaA09g36620D AT3G57280 编码位于叶绿体内囊膜的Tmemb-14蛋白家族的一个成员,涉及脂肪酸和油脂的平衡,可能具有从质体中跨膜转运脂肪酸的功能。
A chloroplast inner envelope localized member of the Tmemb-14 gene family is involved in fatty acid and lipid homeostasis, which has likely functions as a fatty acid transporter that exports fatty acids from the plastid.
BLUP_HI chrC01: 27593591-28593591 BnaC01g29930D AT1G61800 葡萄糖-6-磷酸转运,磷酸烯醇式丙酮酸转运,磷酸甘油酸酯跨膜转运,光合作用适应,跨膜运输,磷酸丙糖跨膜转运。
Glucose-6-phosphate transport, phosphoenolpyruvate transport, phosphoglycerate transmembrane transport, photosynthetic acclimation, transmembrane transport, and triose phosphate transmembrane transport.

Fig. 4

Heat map of primary candidate gene for harvest index CQ: Chongqing environment; YN: Yunnan environment. “24”: high harvest index material; “46”: low harvest index material. 0J: stem at full-bloom stage; L: leaves at full-bloom stage; 30J: stem at pod stage; 30CP: silique pericarps from the lateral branch at 30 days after flowering; 30ZP: silique pericarps from the main inflorescence at 30 days after flowering; 30CS: seeds from the lateral branch at 30 days after flowering; 30ZS: seeds from the main inflorescence at 30 days after flowering. FPKM: fragments per kilo base of exon model per million mapped fragments."

[1] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613-617.
Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018, 40: 613-617. (in Chinese with English abstract)
[2] Hedden P. The genes of the Green Revolution. Trends Genet, 2003, 19: 5-9.
doi: 10.1016/s0168-9525(02)00009-4 pmid: 12493241
[3] Lu K, Xiao Z C, Jian H J, Peng L, Qu C M, Fu M L, He B, Tie L M, Liang Y, Xu X F, Li J N. A combination of genome-wide association and transcriptome analysis reveals candidate genes controlling harvest index-related traits in Brassica napus. Sci Rep, 2016, 6: 36452.
[4] Johnson J M F, Allmaras R R, Reicosky D C. Estimating source carbon from crop residues, roots and rhizodeposits using the national grain-yield database. Agron J, 2006, 98: 622-636.
[5] Swift T A, Fagan D, Benito-Alifonso D, Hill S A, Yallop M L, Oliver T A A, Lawson T, Galan M C, Whitney H M. Photosynthesis and crop productivity are enhanced by glucose-functionalised carbon dots. New Phytol, 2021, 229: 783-790.
doi: 10.1111/nph.16886
[6] Cucinotta M, Di Marzo M, Guazzotti A, de Folter S, Kater M M, Colombo L. Gynoecium size and ovule number are interconnected traits that impact seed yield. J Exp Bot, 2020, 71: 2479-2489.
doi: 10.1093/jxb/eraa050 pmid: 32067041
[7] Li G H, Pan J F, Cui K H, Yuan M S, Hu Q Q, Wang W C, Mohapatra P K, Nie L X, Huang J L, Peng S B. Limitation of unloading in the developing grains is a possible cause responsible for low stem non-structural carbohydrate translocation and poor grain yield formation in rice through verification of recombinant inbred lines. Front Plant Sci, 2017, 8: 1369-1369.
doi: 10.3389/fpls.2017.01369
[8] Li P, Chang T G, Chang S Q, Ouyang X, Qu M G, Song Q F, Xiao L T, Xia S T, Deng Q Y, Zhu X G. Systems model-guided rice yield improvements based on genes controlling source, sink, and flow. J Integr Plant Biol, 2018, 60: 1154-1180.
doi: 10.1111/jipb.12738
[9] Zhang S H, He X Y, Zhao J L, Cheng Y S, Xie Z M, Chen Y H, Yang T F, Dong J F, Wang X F, Liu Q, Liu W, Mao X X, Fu H, Chen Z M, Liao Y P, Liu B. Identification and validation of a novel major QTL for harvest index in rice (Oryza sativa L.). Rice, 2017, 10: 44.
doi: 10.1186/s12284-017-0183-0
[10] Pradhan S, Babar M A, Robbins K, Bai G, Mason R E, Khan J, Shahi D, Avci M, Guo J, Maksud Hossain M, Bhatta M, Mergoum M, Asseng S, Amand P S, Gezan S, Baik B K, Blount A, Bernardo A. Understanding the genetic basis of spike fertility to improve grain number, harvest index, and grain yield in wheat under high temperature stress environments. Front Plant Sci, 2019, 10: 1481.
doi: 10.3389/fpls.2019.01481 pmid: 31850009
[11] Saito H, Fukuta Y, Obara M, Tomita A, Ishimaru T, Sasaki K, Fujita D, Kobayashi N. Two novel QTLs for the harvest index that contribute to high-yield production in rice (Oryza sativa L.). Rice, 2021, 14: 18.
doi: 10.1186/s12284-021-00456-1
[12] Luo X, Ma C Z, Yue Y, Hu K, Li Y, Duan Z, Wu M, Tu J X, Shen J X, Yi B, Fu T D. Unravelling the complex trait of harvest index in rapeseed (Brassica napus L.) with association mapping. BMC Genomics, 2015, 16: 379.
doi: 10.1186/s12864-015-1607-0
[13] Chao H B, Raboanatahiry N, Wang X D, Zhao W G, Chen L, Guo L X, Li B J, Hou D L, Pu S, Zhang L N, Wang H, Wang B S, Li M T. Genetic dissection of harvest index and related traits through genome-wide quantitative trait locus mapping in Brassica napus L. Breed Sci, 2019, 69: 104-116.
doi: 10.1270/jsbbs.18115
[14] Porker K, Straight M, Hunt J R. Evaluation of G × E × M interactions to increase harvest index and yield of early sown wheat. Front Plant Sci, 2020, 11: 994.
doi: 10.3389/fpls.2020.00994
[15] 魏丽娟, 刘瑞影, 张莉, 陈志友, 杨鸿, 霍强, 李加纳. 甘蓝型油菜茎高QTL定位及株高相关位点整合. 作物学报, 2019, 45: 818-828.
doi: 10.3724/SP.J.1006.2019.84133
Wei L J, Liu R Y, Zhang L, Chen Z Y, Yang H, Huo Q, Li J N. Detection of stem height QTL and integration of the loci for plant height-related traits in B. napus. Acta Agron Sin, 2019, 45: 818-828. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.84133
[16] Silva L, Wang S, Zeng Z B. Composite interval mapping and multiple interval mapping: procedures and guidelines for using Windows QTL Cartographer. Methods Mol Biol, 2012, 871: 75.
[17] Mccouch S, Cho Y, Yano M, Paul E, Blinstrub M, Morishima H, Mccouch S, Cho Y, Paul E, Morishima H. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13.
[18] Lu K, Wei L J, Li X L, Wang Y T, Wu J, Liu M, Zhang C, Chen Z Y, Xiao Z C, Jian H J, Cheng F, Zhang K, Du H, Cheng X C, Qu C M, Qian W, Liu L Z, Wang R, Zou Q Y, Ying J M, Xu X F, Mei J Q, Liang Y, Chai Y R, Tang Z L, Wan H F, Ni Y, He Y J, Lin N, Fan Y H, Sun W, Li N N, Zhou G, Zheng H K, Wang X W, Paterson A H, Li J N. Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nat Commun, 2019, 10: 1154.
doi: 10.1038/s41467-019-09134-9
[19] Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
pmid: 17586829
[20] Barrett J C, Fry B, Maller J, Daly M J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 2005, 21: 263-265.
pmid: 15297300
[21] Chalhoub B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M C, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P. Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014, 345: 950-953.
doi: 10.1126/science.1253435 pmid: 25146293
[22] 孙伟. 基于多组学联合分析的甘蓝型油菜产量与收获指数调控机制解析. 西南大学硕士学位论文, 重庆, 2020.
Sun W. Analysis of the Regulation Mechanism of Yield and Harvest Index in Brassica napus Based on Multi-omics. MS Thesis of Southwest University, Chongqing, China, 2020. (in Chinese with English abstract)
[23] Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30: 2114-2120.
doi: 10.1093/bioinformatics/btu170
[24] Dobin A, Davis C A, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras T R. STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 2013, 29: 15-21.
doi: 10.1093/bioinformatics/bts635
[25] Liao Y, Smyth G K, Shi W. featureCounts: an efficient general-purpose program for assigning sequence reads to genomic features. Bioinformatics, 2014, 30: 923-930.
doi: 10.1093/bioinformatics/btt656
[26] Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15: 550.
doi: 10.1186/s13059-014-0550-8
[27] 孙程明, 陈松, 彭琦, 张维, 易斌, 张洁夫, 傅廷栋. 甘蓝型油菜角果长度性状的全基因组关联分析. 作物学报, 2019, 45: 1303-1310.
doi: 10.3724/SP.J.1006.2019.94021
Sun C M, Chen S, Peng Q, Zhang W, Yi B, Zhang J F, Fu T D. Genome-wide association study of silique length in rapeseed (Brassica napus L.). Acta Agron Sin, 2019, 45: 1303-1310. (in Chinese with English abstract)
[28] 孙程明, 陈锋, 陈松, 彭琦, 张维, 易斌, 张洁夫, 傅廷栋. 甘蓝型油菜每角粒数的全基因组关联分析. 作物学报, 2020, 46: 147-153.
doi: 10.3724/SP.J.1006.2020.94060
Sun C M, Chen F, Chen S, Peng Q, Zhang W, Yi B, Zhang J F, Fu T D. Genome-wide association study of seed number per silique in rapeseed (Brassica napus L.). Acta Agron Sin, 2020, 46: 147-153. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94060
[29] Ye J, Yang Y H, Chen B, Shi J Q, Luo M Z, Zhan J P, Wang X F, Liu G H, Wang H Z. An integrated analysis of QTL mapping and RNA sequencing provides further insights and promising candidates for pod number variation in rapeseed (Brassica napus L.). BMC Genomics, 2017, 18: 71.
doi: 10.1186/s12864-016-3402-y
[30] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析. 作物学报, 2021, 47: 650-659.
doi: 10.3724/SP.J.1006.2021.04136
Zhang C, Zhao X Z, Pang C K, Peng M L, Wang X D, Chen F, Zhang W, Chen S, Peng Q, Yi B, Sun C M, Zhang J F, Fu T D. Genome-wide association study of 1000-seed weight in rapeseed (Brassica napus L.). Acta Agron Sin, 2021, 47: 650-659. (in Chinese with English abstract)
[31] Jensen P E, Haldrup A, Zhang S, Scheller H V. The PSI-O subunit of plant photosystem I is involved in balancing the excitation pressure between the two photosystems. J Biol Chem, 2004, 279: 24212-24217.
[32] Takahashi M, Shigeto J, Sakamoto A, Morikawa H. Selective nitration of PsbO1, PsbO2, and PsbP1 decreases PSII oxygen evolution and photochemical efficiency in intact leaves of Arabidopsis. Plant Signal Behav, 2017, 12: e1376157.
[33] Wientjes E, van Stokkum I H M, van Amerongen H, Croce R. Excitation-energy transfer dynamics of higher plant photosystem I light-harvesting complexes. Biophys J, 2011, 100: 1372-1380.
doi: 10.1016/j.bpj.2011.01.030 pmid: 21354411
[34] Li N, Song D J, Peng W, Zhan J P, Shi J Q, Wang X F, Liu G H, Wang H Z. Maternal control of seed weight in rapeseed (Brassica napus L.): the causal link between the size of pod (mother, source) and seed (offspring, sink). Plant Biotechnol J, 2019, 17: 736-749.
doi: 10.1111/pbi.13011
[35] Joshi V, Laubengayer K M, Schauer N, Fernie A R, Jander G. Two Arabidopsis threonine aldolases are nonredundant and compete with threonine deaminase for a common substrate pool. Plant Cell, 2006, 18: 3564-3575.
doi: 10.1105/tpc.106.044958
[36] Schilmiller A L, Stout J, Weng J K, Humphreys J, Ruegger M O, Chapple C. Mutations in the cinnamate-4-hydroxylase gene impact metabolism, growth and development in Arabidopsis. Plant J, 2009, 60: 771-782.
doi: 10.1111/j.1365-313X.2009.03996.x
[37] Jung S H, Kim R J, Kim K J, Lee D H, Suh M C. Plastidial and mitochondrial mmalonyl CoA-ACP malonyltransferase is essential for cell division and its overexpression increases storage oil content. Plant Cell Physiol, 2019, 60: 1239-1249.
doi: 10.1093/pcp/pcz032 pmid: 30796840
[38] Puttick D, Dauk M, Lozinsky S, Smith M A. Overexpression of a FAD3 desaturase increases synthesis of a polymethylene- interrupted dienoic fatty acid in seeds of Arabidopsis thaliana L. Lipids, 2009, 44: 753-757.
doi: 10.1007/s11745-009-3315-5 pmid: 19548018
[39] Lu W, Tang X L, Huo Y Q, Xu R, Qi S D, Huang J G, Zheng C C, Wu C A. Identification and characterization of fructose 1,6- bisphosphate aldolase genes in Arabidopsis reveal a gene family with diverse responses to abiotic stresses. Gene, 2012, 503: 65-74.
doi: 10.1016/j.gene.2012.04.042
[40] Jeppson S, Mattisson H, Demski K, Lager I. A predicted transmembrane region in plant diacylglycerol acyltransferase 2 regulates specificity toward very-long-chain acyl-CoAs. J Biol Chem, 2020, 295: 15398-15406.
[41] Huai D X, Zhang Y Y, Zhang C Y, Cahoon E B, Zhou Y M. Combinatorial effects of fatty acid elongase enzymes on nervonic acid production in camelina sativa. PLoS One, 2015, 10: e0131755.
[42] Simkin A J, Lopez-Calcagno P E, Davey P A, Headland L R, Lawson T, Timm S, Bauwe H, Raines C A. Simultaneous stimulation of sedoheptulose 1,7-bisphosphatase, fructose 1,6-bisphophate aldolase and the photorespiratory glycine decarboxylase-H protein increases CO2 assimilation, vegetative biomass and seed yield in Arabidopsis. Plant Biotechnol J, 2017, 15: 805-816.
doi: 10.1111/pbi.12676
[43] Yu X H, Cai Y H, Keereetaweep J, Wei K, Chai J, Deng E, Liu H, Shanklin J. Biotin attachment domain-containing proteins mediate hydroxy fatty acid-dependent inhibition of acetyl CoA carboxylase. Plant Physiol, 2021, 185: 892-901.
doi: 10.1093/plphys/kiaa109
[44] Macho-Rivero M A, Herrera-Rodríguez M B, Brejcha R, Schäffner A R, Tanaka N, Fujiwara T, González-Fontes A, Camacho- Cristóbal J J. Boron toxicity reduces water transport from root to shoot in Arabidopsis plants. Evidence for a reduced transpiration rate and expression of major PIP aquaporin genes. Plant Cell Physiol, 2018, 59: 841-849.
doi: 10.1093/pcp/pcy026
[45] Israel D, Khan S, Warren C R, Zwiazek J J, Robson T M. The contribution of PIP2-type aquaporins to photosynthetic response to increased vapour pressure deficit. J Exp Bot, 2021, 72: 5066-5078.
doi: 10.1093/jxb/erab187
[46] Karlsson P M, Herdean A, Adolfsson L, Beebo A, Nziengui H, Irigoyen S, Ünnep R, Zsiros O, Nagy G, Garab G, Aronsson H, Versaw W K, Spetea C. The Arabidopsis thylakoid transporter PHT4;1 influences phosphate availability for ATP synthesis and plant growth. Plant J, 2015, 84: 99-110.
doi: 10.1111/tpj.12962
[47] Li N N, Gügel I L, Giavalisco P, Zeisler V, Schreiber L, Soll J, Philippar K. FAX1, a novel membrane protein mediating plastid fatty acid export. PLoS Biol, 2015, 13: e1002053.
[48] Dyson B C, Webster R E, Johnson G N. GPT2: a glucose 6-phosphate/phosphate translocator with a novel role in the regulation of sugar signalling during seedling development. Ann Bot, 2014, 113: 643-652.
doi: 10.1093/aob/mct298
[49] Manfield I W, Devlin P F, Jen C H, Westhead D R, Gilmartin P M. Conservation, convergence, and divergence of light-responsive, circadian-regulated, and tissue-specific expression patterns during evolution of the Arabidopsis GATA gene family. Plant Physiol, 2007, 143: 941-958.
pmid: 17208962
[50] Jain P, Shah K, Sharma N, Kaur R, Singh J, Vinson C, Rishi V. A-ZIP53, a dominant negative reveals the molecular mechanism of heterodimerization between bZIP53, bZIP10 and bZIP25 involved in Arabidopsis seed maturation. Sci Rep, 2017, 7: 14343.
[51] Li S J, Fu Q T, Huang W D, Yu D Q. Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress. Plant Cell Rep, 2009, 28: 683-693.
doi: 10.1007/s00299-008-0666-y
[52] Alonso R, Oñate-Sánchez L, Weltmeier F, Ehlert A, Diaz I, Dietrich K, Vicente-Carbajosa J, Dröge-Laser W. A pivotal role of the basic leucine zipper transcription factor bZIP53 in the regulation of Arabidopsis seed maturation gene expression based on heterodimerization and protein complex formation. Plant Cell, 2009, 21: 1747-1761.
doi: 10.1105/tpc.108.062968
[53] Yang W T, Chen S Y, Cheng Y X, Zhang N, Ma Y X, Wang W, Tian H N, Li Y Y, Hussain S, Wang S C. Cell wall/vacuolar inhibitor of fructosidase 1 regulates ABA response and salt tolerance in Arabidopsis. Plant Signal Behav, 2020, 15: 1744293.
[54] Sato A, Yamamoto K T. Overexpression of the non-canonical Aux/IAA genes causes auxin-related aberrant phenotypes in Arabidopsis. Physiol Plant, 2008, 133: 397-405.
doi: 10.1111/j.1399-3054.2008.01055.x
[55] Qian D, Zhang Z, He J X, Zhang P, Ou X B, Li T, Niu L P, Nan Q, Niu Y, He W L, An L Z, Jiang K, Xiang Y. Arabidopsis ADF5 promotes stomatal closure by regulating actin cytoskeleton remodeling in response to ABA and drought stress. J Exp Bot, 2019, 70: 435-446.
doi: 10.1093/jxb/ery385
[56] Na J K, Kim J K, Kim D Y, Assmann S M. Expression of potato RNA-binding proteins StUBA2a/b and StUBA2c induces hypersensitive-like cell death and early leaf senescence in Arabidopsis. J Exp Bot, 2015, 66: 4023-4033.
doi: 10.1093/jxb/erv207
[57] Zhang L L, Shao Y J, Ding L, Wang M J, Davis S J, Liu J X. XBAT31 regulates thermos responsive hypocotyl growth through mediating degradation of the thermosssensor ELF3 in Arabidopsis. Sci Adv, 2021, 7: eabf4427.
[1] KE Hui-Feng, ZHANG Zhen, GU Qi-Shen, ZHAO Yan, LI Pei-Yu, ZHANG Dong-Mei, CUI Yan-Ru, WANG Xing-Fen, WU Li-Qiang, ZHANG Gui-Yin, MA Zhi-Ying, SUN Zheng-Wen. Genome-wide association study of root biomass related traits at seeding stage under low phosphorus stress in cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2168-2179.
[2] LI Sheng-Ting, XU Yuan-Fang, CHANG Wei, LIU Ya-Jun, GU Yuan, ZHU Hong, LI Jia-Na, LU Kun. Bna.C02SWEET15 positively regulates the flowering time of rapeseed through photoperiodic pathway [J]. Acta Agronomica Sinica, 2022, 48(8): 1938-1947.
[3] ZHANG Tian-Yu, WANG Yue, LIU Ying, ZHOU Ting, YUE Cai-Peng, HUANG Jin-Yong, HUA Ying-Peng. Bioinformatics analysis and core member identification of proline metabolism gene family in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(8): 1977-1995.
[4] DAI Li-Shi, CHANG Wei, ZHANG Sai, QIAN Ming-Chao, LI Xiao-Dong, ZHANG Kai, LI Jia-Na, QU Cun-Min, LU Kun. Functional validation of Bna-novel-miR36421 regulating plant architecture and flower organ development in Arabidopsis thaliana [J]. Acta Agronomica Sinica, 2022, 48(7): 1635-1644.
[5] YANG Fei, ZHANG Zheng-Feng, NAN Bo, XIAO Ben-Ze. Genome-wide association analysis and candidate gene selection of yield related traits in rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1813-1821.
[6] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[7] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[8] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[9] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[10] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[11] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[12] ZHAO Hai-Han, LIAN Wang-Min, ZHAN Xiao-Deng, XU Hai-Ming, ZHANG Ying-Xin, CHENG Shi-Hua, LOU Xiang-Yang, CAO Li-Yong, HONG Yong-Bo. Genetic dissection of the bacterial blight disease resistance in super hybrid rice RILs using genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(1): 121-137.
[13] WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510.
[14] ZENG Wei-Ying, LAI Zhen-Guang, SUN Zu-Dong, YANG Shou-Zhen, CHEN Huai-Zhu, TANG Xiang-Min. Identification of the candidate genes of soybean resistance to bean pyralid (Lamprosema indicata Fabricius) by BSA-Seq and RNA-Seq [J]. Acta Agronomica Sinica, 2021, 47(8): 1460-1471.
[15] MA Juan, CAO Yan-Yong, LI Hui-Yong. Genome-wide association study of ear cob diameter in maize [J]. Acta Agronomica Sinica, 2021, 47(7): 1228-1238.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!