Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (10): 2435-2442.doi: 10.3724/SP.J.1006.2022.11088

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Regulation of adventitious root development by HvLBD19 gene in barley (Hordeum vulgare L.)

GUO Bao-Jian1,2(), WANG Shuang1,2, LYU Chao1,2, WANG Fei-Fei1,2, XU Ru-Gen1,2,*()   

  1. 1Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
    2Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2021-10-12 Accepted:2022-02-25 Online:2022-10-12 Published:2022-03-22
  • Contact: XU Ru-Gen E-mail:bjguo@yzu.edu.cn;rgxu@yzu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31771771);Natural Science Foundation of the Jiangsu Higher Education Institutions of China(19KJA560005);China Agriculture Research System of MOF and MARA(CARS-05);and the Priority Academic Program Development of Jiangsu Higher Education Institutions

Abstract:

LBD gene family is a plant specific transcription factor family, which plays an important role in regulating plant development and nitrogen metabolism. Micro-synteny analysis showed that barley HvLBD19 was an orthologous of maize RTCS and rice ARL1 gene. Temporal and spatial expression analysis revealed that this gene was most abundant in adventitious roots and was induced by exogenous auxin treatment, which encoded a protein located in the nucleus. Transgenic results indicated that the adventitious root length increased by nearly one time, and the number of adventitious roots increased by 40%. It was preliminarily confirmed that HvLBD19 gene controlled adventitious root development in barley and provided a foundation for further research on the molecular mechanism of HvLBD19 gene in regulating adventitious root development in barley.

Key words: barley, LATERAL ORGAN BOUNDARIES DOMAIN gene, overexpression, adventitious root

Table 1

Primers used in the present study"

引物编号
Primer pairs ID
引物序列
Primer sequence (5′-3′)
内容
Content
P1 ATGACGGGACTGGGTTCGCC 编码区扩增
Coding sequence amplification
TTACGAGCGATTAAGGTAAG
P2 AGTTTCTGCGTCGCAAGTG 荧光定量
qRT-PCR
GAGCTTGGAGACGTTGCTG
P3 GGTCCATCCTAGCCTCACTC 内参基因HvActin扩增
Internal control of HvActin amplification
GATAACAGCAGTGGAGCGCT
P4 TCTCCCTTACCCATGATGAGCATGACGGGACTGGG 瞬时表达载体构建
Transient expression vector construction
CACGGGGGACTCTAGCGAGCGATTAAGGTAAGCATACGC
P5 CCCAAGCTTCTTGCATGCCTGCAGTGCAGCGTGACCCG Ubi启动子扩增
Ubi promoter amplification
CCCCCCGGGCTGCAGAAGTAACACCAAAC
P6 GACTAGTGAGCTCGAATTTCCCCGATC nos终止子扩增
nos terminator amplification
GCTCTAGAGATCTGATATCATCGATGAA
P7 CCCCCCGGGATGACGGGACTGGGTTCGCC 大麦超表达载体构建
Overexpression vector construction in barley
GACTAGTTTACGAGCGATTAAGGTAAG

Fig. 1

Construction of HvLBD19 gene overexpression vectors in barley A: the construction of tobacco transient expression vector; B: the construction of barley overexpression vector."

Fig. 2

Genetic transformation of barley A: young spike; B: callus induction of immature embryos; C: callus transformation; D: regenerating transformed barley line."

Fig. 3

Sequence analysis of LBD genes A: sequence alignment of HvLBD19, OsARL1, and ZmRTCS proteins; B: micro-synteny analysis of the LBD gene in maize, barley, and rice."

Fig. 4

Relative expression profiling of HvLBD19 gene A: leaf (L), adventitious root (AR), node root (NR), and seminal root (SR) (gene expression was represented as the relative expression to that for leaf); B and C: the relative expression profiling in seminal root and node root under NAA treatment (Gene expression was represented as the relative expression to that for 0 h)."

Fig. 5

Subcellular location of HvLBD19 protein Bar: 20 μm."

Fig. 6

Genetic transformation and positive plants identification in barley A: PCR identification of positive plants; P: plasmid; G: Golden Promise; numbers: transgenic lines; M: DNA marker. B: hygromycin screening. C: the relative expression level of HvLBD19 gene between Golden Promise and transgenic lines. * and ** indicate the significant difference at the 0.01 and 0.05 probalitity levels between transgenic lines and wild type, respectively."

Fig. 7

Observation on root traits of seedling stage A: phenotype of wild-type and transgenic lines; B: seminal root length; C: number of seminal roots; D: adventitious root length; E: number of adventitious roots."

[1] Shuai B, Reynagapeña C G, Springer P S. The lateral organ boundaries gene defines a novel, plant-specific gene family. Plant Physiol, 2002, 129: 747-761.
[2] Rubin G, Tohge T, Matsuda F, Saito K, Scheible W. Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell, 2009, 21:3567-3584.
doi: 10.1105/tpc.109.067041
[3] Chanderbali A S, He F M, Soltis P S, Soltis D E. Out of the water: origin and diversification of the LBD gene family. Mol Biol Evol, 2015, 32: 1996-2000.
doi: 10.1093/molbev/msv080 pmid: 25839188
[4] Matsumura Y, Iwakawa H, Machida Y. Characterization of genes in the ASYMMETRIC LEAVES2/ LATERAL ORGAN BOUNDARIES (AS2/LOB) family in Arabidopsis thaliana, and functional and molecular comparisons between AS2 and other family members. Plant J, 2009, 58: 525-537.
doi: 10.1111/j.1365-313X.2009.03797.x
[5] Zhang Y M, Zhang S Z, Zheng C C. Genomewide analysis of LATERAL ORGAN BOUNDARIES domain gene family in Zea mays. J Genet, 2014, 93: 79-91.
[6] Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell, 2007, 19: 118-130.
pmid: 17259263
[7] Guo B J, Wang J, Lin S, Tian Z, Zhou K, Luan H Y, Lyu C, Zhang X Z, Xu R G. A genome-wide analysis of the ASYMMETRIC LEAVES2/LATERAL ORGAN BOUNDARIES (AS2/LOB) gene family in barley (Hordeum vulgare L.). J Zhejiang Univ Sci B, 2016, 17: 763-774.
doi: 10.1631/jzus.B1500277
[8] Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Shibata Y, Gomi K, Umemura I, Hasegawa Y, Ashikari M, Kitano M, Matsuoka M. Crown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling. Plant Cell, 2005, 17: 1387-1396.
doi: 10.1105/tpc.105.030981
[9] Liu H J, Wang S F, Yu X B, Yu J, He X W, Zhang S L, Shou H X, Wu P. ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant J, 2005, 43: 47-56.
doi: 10.1111/j.1365-313X.2005.02434.x
[10] Taramino G, Sauer M, Stauffer J L, Multani D, Niu X M, Sakai H, Hochholdinger F. The maize (Zea mays L.) RTCS gene encodes an LOB domain protein that is a key regulator of embryonic seminal and post-embryonic shoot-borne root initiation. Plant J, 2007, 50: 11.
[11] Ori N, Eshed Y, Chuck G, Bowman J L, Hake S. Mechanisms that control knox gene expression in the Arabidopsis shoot. Development, 2000, 127: 5523-5532.
doi: 10.1242/dev.127.24.5523 pmid: 11076771
[12] Semiarti E, Ueno Y, Tsukay H, Iwakawa H, Machida C, Machida Y. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves. Development, 2001, 128: 1771-1783.
doi: 10.1242/dev.128.10.1771 pmid: 11311158
[13] Byrne M E, Simorowski J, Martienssen R A. ASYMMETRIC LEAVES1 reveals knox gene redundancy in Arabidopsis. Development, 2002, 129: 1957-1965.
doi: 10.1242/dev.129.8.1957 pmid: 11934861
[14] Machida C, Nakagawa A, Kojima S, Takahashi H, Machida Y. The complex of ASYMMETRIC LEAVES (AS) proteins plays a central role in antagonistic interactions of genes for leaf polarity specification in Arabidopsis. Wires Dev Biol, 2015, 4: 655-671.
doi: 10.1002/wdev.196
[15] Oh S A, Park K S, Twell D, Park S K. The SIDECAR POLLEN gene encodes a microspore-specific LOB/AS2 domain protein required for the correct timing and orientation of asymmetric cell division. Plant J, 2010, 64: 839-50.
doi: 10.1111/j.1365-313X.2010.04374.x
[16] Albinsky D, Kusano M, Higuchi M, Hayashi N, Kobayashi M, Fukushima A, Mori M, Ichikawa T, Matsui K, Kuroda H, Horii Y, Tsumoto Y, Sakakibara H, Hirochika H, Matsui M, Saito K. Metabolomic screening applied to rice FOX Arabidopsis lines leads to the identification of a gene-changing nitrogen metabolism. Mol Plant, 2010, 3: 125-142.
doi: 10.1093/mp/ssp069 pmid: 20085895
[17] Chen Y M, Song W J, Xie X M, Wang Z H, Guan P F, Peng H R, Jiao Y N, Ni Z F, Sun Q X, Guo W L. A Collinearity- incorporating homology inference strategy for connecting emerging assemblies in Triticeae tribe as a pilot practice in the plant pangenomic era. Mol Plant, 2020, 13: 1694-1708.
doi: 10.1016/j.molp.2020.09.019
[18] Guo B J, Wei Y F, Xu R B, Lin S, Luan H Y, Lyu C, Zhang X Z, Song X Y, Xu R G. Genome-wide analysis of APETALA2/ ethylene-responsive factor (AP2/ERF) gene family in barley (Hordeum vulgare L.). PLoS One, 2016, 11: e0161322.
[19] Jones H D, Shewry P R, eds. Transgenic wheat, barley and oats:barley transformation using agrobacterium-mediated techniques. In: Methods in Molecular Biology. New York: Humana Press, 2009. pp 137-147.
[20] Majer C, Xu C, Berendzen K W, Hochholdinger F. Molecular interactions of ROOTLESS CONCERNING CROWN AND SEMINAL ROOTS, a LOB domain protein regulating shoot- borne root initiation in maize (Zea mays L.). Philos Trans R Soc Lond B Biol Sci, 2012, 367: 1542-1551.
doi: 10.1098/rstb.2011.0238
[21] Shao Y, Zhou H Z, Wu Y, Zhang H, Lin J, Jiang X Y, He Q J, Zhu J S, Li Y G, Yu H, Mao C Z. OsSPL3, an SBP-domain protein, regulates crown root development in rice. Plant Cell, 2019, 31: 1257-1275.
doi: 10.1105/tpc.19.00038
[22] 张焕欣, 董春娟, 李福凯, 王红飞, 尚庆茂. 植物不定根发生机理的研究进展. 西北植物学报, 2017, 37: 1457-1464.
Zhang H X, Dong C J, Li F K, Wang H F, Shang Q M. Progress on the regulatory mechanism of adventitious rooting. Acta Bot Boreal-Occident Sin, 2017, 37: 1457-1464. (in Chinese with English abstract)
[1] GUO Nan-Nan, LIU Tian-Ce, SHI Shuo, HU Xin-Ting, NIU Ya-Dan, LI Liang. Regulation of long non-coding RNA (LncRNA) in barley roots in response to Piriformospora indica colonization [J]. Acta Agronomica Sinica, 2022, 48(7): 1625-1634.
[2] WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287.
[3] YAO Xiao-Hua, WANG Yue, YAO You-Hua, AN Li-Kun, WANG Yan, WU Kun-Lun. Isolation and expression of a new gene HvMEL1 AGO in Tibetan hulless barley under leaf stripe stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1181-1190.
[4] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[5] YU Xin-Lian, LI Xin, YAO Xiao-Hua, YAO You-Hua, BAI Yi-Xiong, AN Li-Kun, WU Kun-Lun. Genetic mapping and candidate gene analysis of the major QTL cqHD2H-2 for early heading in barley (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2022, 48(10): 2463-2474.
[6] HE Jun-Yu, ZHONG Wei, CHEN Yun-Qiong, WANG Wei-Bin, XIONG Jing-Lei, JIANG Ya-Li, SHI Hui-Meng, CHEN Sheng-Wei. Analysis on the accumulation characteristics of seven flavonoids at grain development stage in barley [J]. Acta Agronomica Sinica, 2021, 47(8): 1624-1630.
[7] GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214.
[8] LI Jie, FU Hui, YAO Xiao-Hua, WU Kun-Lun. Differentially expressed protein analysis of different drought tolerance hulless barley leaves [J]. Acta Agronomica Sinica, 2021, 47(7): 1248-1258.
[9] ZHANG Fan, YANG Qian. Effects of combined application of organic materials and chemical fertilizers in barley-double cropping rice rotation system on barley resource utilization efficiency and yield [J]. Acta Agronomica Sinica, 2021, 47(12): 2522-2531.
[10] LI Xiao-Xu, WANG Rui, ZHANG Li-Xia, SONG Ya-Meng, TIAN Xiao-Nan, GE Rong-Chao. Cloning and functional identification of gene OsATS in rice [J]. Acta Agronomica Sinica, 2021, 47(10): 2045-2052.
[11] XU Ting-Ting, WANG Qiao-Ling, ZOU Shu-Qiong, DI Jia-Chun, YANG Xin, ZHU Yin, ZHAO Han, YAN Wei. Development and application of InDel markers based on high throughput sequencing in barley [J]. Acta Agronomica Sinica, 2020, 46(9): 1340-1350.
[12] ZHAO Xiao-Hong,BAI Yi-Xiong,WANG Kai,YAO You-Hua,YAO Xiao-Hua,WU Kun-Lun. Effects of planting density on lodging resistance and straw forage characteristics in two hulless barley varieties [J]. Acta Agronomica Sinica, 2020, 46(4): 586-595.
[13] Yin-Ping XU, Yong-Dong PAN, Qiang-De LIU, Yuan-Hu YAO, Yan-Chun JIA, Cheng REN, Ke-Cang HUO, Wen-Qing CHEN, Feng ZHAO, Qi-Jun BAO, Hua-Yu ZHANG. Drought resistance identification and drought resistance indexes screening of barley resources at mature period [J]. Acta Agronomica Sinica, 2020, 46(3): 448-461.
[14] ZHANG Huan, YANG Nai-Ke, SHANG Li-Li, GAO Xiao-Ru, LIU Qing-Chang, ZHAI Hong, GAO Shao-Pei, HE Shao-Zhen. Cloning and functional analysis of a drought tolerance-related gene IbNAC72 in sweet potato [J]. Acta Agronomica Sinica, 2020, 46(11): 1649-1658.
[15] MA Jin-Jiao,LAN Jin-Ping,ZHANG Tong,CHEN Yue,GUO Ya-Lu,LIU Yu-Qing,YAN Gao-Wei,WEI Jian,DOU Shi-Juan,YANG Ming,LI Li-Yun,LIU Guo-Zhen. Overexpression of OsMPK17 protein enhances drought tolerance of rice [J]. Acta Agronomica Sinica, 2020, 46(01): 20-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Huang Ce;Wang Tian-duo. COMPUTER SIMULATION OF BIOMASS PRODUCTION IN RICE COMMUNITY[J]. Acta Agron Sin, 1986, (01): 1 -8 .
[2] ZHANG Wen-Jing;HU Hong-Biao;CHEN Bing-Lin;WANG You-Hua;ZHOU Zhi-Guo. Difference of Physiological Characteristics of Cotton Bolls in Development of Fiber Thickening and Its Relationship with Fiber Strength[J]. Acta Agron Sin, 2008, 34(05): 859 -869 .
[3] ZHANG Peng; ZHANG Hai-Yang ; ; GUO Wang-Zhen; ZHENG Yong-Zhan; WEI Li-Bin; ZHANG Tian-Zhen. Genetic Diversity Analysis of Sesamum indicum L. Germplasms Using SRAP and EST-SSR Markers[J]. Acta Agron Sin, 2007, 33(10): 1696 -1702 .
[4] HE Liang;LI Fu-Hua;SHA Li-Na;FU Feng-Ling;LI Wan-Chen. Activity of Serine/Threonine Protein Phosphatase Type-2C (PP2C) and Its Relationships to Drought Tolerance in Maize[J]. Acta Agron Sin, 2008, 34(05): 899 -903 .
[5] Qiu Zhaofeng; Zhai Liye. THE ESTIMATION FOR SURFACE AREA OF SPIKE AND AWN OF THE COMMON WHEAT[J]. Acta Agron Sin, 1985, 11(02): 138 .
[6]

CHANG Li-Ying;GU Dong-Xiang;ZHANG Wen-Yu;YANG Jie;CAO Wei-Xing;ZHU Yan

. A Simulation Model of Leaf Elongation Process in Rice[J]. Acta Agron Sin, 2008, 34(02): 311 -317 .
[7] Han Xiangling;Liu Xunhao;Kong Yangzhong. STUDIES ON THE PRODUCTIVITY OF SINGLE AND DOUBLE CROPPING IN HUANG-HUAI-HAI PLAIN[J]. Acta Agron Sin, 1986, 12(02): 109 -116 .
[8] NING Tang-Yuan;LI Zeng-Jia;JIAO Nian-Yuan;ZHAO Chun;SHEN Jia-Xiang;ZHANG Guang-Hui;WANG Hao. Effects on Paste Properties and Starch Contents of Different Maturity Maize Cultivars Relay-planting[J]. Acta Agron Sin, 2005, 31(01): 77 -82 .
[9] Mei Minghua; Li Zebing. Analysis of the Major Restoring Genes Covering Photoperiod Sensitive Genic Male Sterility (PGMS) in Japanica Rice[J]. Acta Agron Sin, 1995, 21(01): 95 -101 .
[10] XIE Li-Hong;YANG Shi-Hua;CHEN Neng;DUAN Bin-Wu;ZHU Zhi-Wei;LIAO Xi-Yuan. Cooked Rice Texture and Starch RVA Properties for Indica Rice under Different Ecological Conditions[J]. Acta Agron Sin, 2006, 32(10): 1479 -1484 .