Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (11): 2826-2839.doi: 10.3724/SP.J.1006.2022.14172

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Effects of shading at grain filling stages on anthocyanin accumulation and related gene expression characteristics in seed coat of black mung bean

MA Chao(), FENG Ya-Lan, WU Shan-Wei, ZHANG Jun, GUO Bin-Bin, XIONG Ying, LI Chun-Xia*(), LI You-Jun*()   

  1. Agronomy College, Henan University of Science and Technology / Dry-land Agricultural Engineering Technology Research Center in Henan, Luoyang 471000, Henan, China
  • Received:2021-09-24 Accepted:2022-03-25 Online:2022-11-12 Published:2022-04-20
  • Contact: LI Chun-Xia,LI You-Jun E-mail:machao840508@163.com;lichx@haust.edu.cn;kdnxylyj@126.com
  • Supported by:
    The National Natural Science Foundation of China(31401323);The Natural Science Foundation of Henan Province(222300420430);The Training Program for University Young Key Teachers in Henan Province(2021GGJS050)

Abstract:

To investigate the accumulation of anthocyanin in the seed coat of mung bean and the effects of shading on it, two cultivars with different seed colors (green and black) were both shaded after flowering 5 days under the conditions of field cultivation. The accumulation of various anthocyanin components in seed coat were assessed using spectrophotometry combined with liquid chromatography tandem mass spectrometer. The relative expressions of structural genes and the activity of three anthocyanin synthase enzymes were both analyzed. The results showed that the seed coat of black mung bean began to accumulate anthocyanins at 16 days after flowering (S3 period), and the detectable anthocyanins at the near-mature period (S4 period) were delphinidin (88.67%, main pigment), cyanidin (8.68%), procyanidin (1.05%), petunidin (0.94%), pelargonidin (0.34%), and peonidin (0.32%) according to the proportion of each component. In the black mung bean seed coat at S4 period, the main pigment components of the three anthocyanins were delphinidin-3-O-glucoside (76.61%), cyanidin-3-O-glucoside (89.17%), and procyanidin B3 (28.64%). In general, the relative expression levels of the anthocyanin synthesis structural genes (PAL, C4H, 4CL, CHS, CHI, F3H, F35H, DFR, LDOX, and UFGT) in the seed coat of black mung bean were significantly higher than green mung bean, among which DFR (37185%), LDOX (4409%), and F35H (3299%) had the largest differential expression multiples. The activities of PAL, CHI, and UFGT in black mung bean seed coat were also greater than those of green mung bean. The relative expression levels of nine anthocyanin synthesis structural genes and the activity of two anthocyanin synthesis-related enzymes were dramatically positively correlated with the contents and the total contents of most anthocyanin components. The relative expression levels of eleven anthocyanin synthesis structural genes and the activities of three anthocyanin synthesis-related enzymes were remarkably reduced under shading conditions, which ultimately led to a noticeable decrease in the content and total amount of anthocyanin components. The results provide a theoretical foundation for the regulation mechanism of black mung bean seed coat coloration, and also contribute to the auxiliary selection of black mung bean breeding.

Key words: black mung bean, shading, anthocyanin, seed coat, the relative expression levels of genes

Fig. 1

Phenotypes of mature seeds of green mung bean and black mung bean"

Table 1

Primers in this study"

基因名称
Gene name
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
VrPAL TCTTCATCCTATCACCCCACA TCATGCTATCAATCACCCAATC
VrC4H ATACTAAAGCATTCCACCGTT AGATACATCACCACCTACCCA
Vr4CL GCTGGAAGAAGAACGCTTGTT GTTGTTGGATTGAATGGTGGG
VrCHS GTCCATTCCCAAACCACCTCA TCGGCACTTCCACAACCACTA
VrCHI AAGCTAATAAGAGGATCGAAG AGAGAAACTAAGCCCCAAG
VrF3H CAAATCAAAGGAACCACAAG TTATCACAATCATACACAACAACT
VrF3'H GGTGGTGGAGGTGATGGTG ACTTGGGTCAGGATTCTTGGA
VrF3'5'H CAAAGTGATAGGTAGGGAGCG GGTTGAGAGGAGTTGAAGGGT
VrDFR AATGAAGTGATAAAGCCGACA GCATAAGAAAGGGACCAACG
VrLDOX AGGAGTTGGAGAACATAGGAA AGGATAAACAAGGTGGAAGAA
VrUFGT GGTGTGAGGATAAGATGGTTGT TGCGAGGTAGGGAATGAAGT
VrACTIN GTTCTGTTCCAGCCATCCAT GTGGTGCGACAACCTTGATT

Fig. 2

Phenotypes of seed coat of green mung bean and black mung bean under shaded treatment at different stages S1: 10 days post anthesis; S2: 13 days post anthesis; S3: 16 days post anthesis; S4: 10 days post anthesis."

Fig. 3

Effects of shading on anthocyanin contents in seed coat of green mung bean and black mung bean A: HCl-Methanol method; B: LC-MC/MC method; C: the correlation analysis of result between HCl-Methanol method and LC-MC/MC method. Values are means of three biological replicates with error bars indicating standard derivations (SD). The same treatment with different letters is significantly different at the 0.05 probability level in different stage. GS1: 10 days post anthesis of green mung bean; GS2: 13 days post anthesis of green mung bean; GS3: 16 days post anthesis of green mung bean; GS4: 19 days post anthesis of green mung bean; BS1: 10 days post anthesis of black mung bean; BS2: 13 days post anthesis of black mung bean; BS3: 16 days post anthesis of black mung bean; BS4: 19 days post anthesis of black mung bean."

Fig. 4

Effects of shading on the proportion of anthocyanin components in seed coat of green mung bean and black mung bean A: illuminated; B: shaded. Abbreviations are the same as those given in Fig. 3."

Table 2

Efects of shading on the rhaire contet of depinidin in sed coat of gre mg bean and black mung bean"

Table 3

Effects of shading on relative content of cyanidins in seed coat of cyanidins in sed coat of green mung bean and black mung bean"

Table 4

Effect of shading on relative content of procyanidins in seed coat of green mung bean and black mung bea n."

Fig. 5

Effects of shading on the relative expression of biosynthesis genes of anthocyanin in seed coat of green mung bean and black mung bean Abbreviations are the same as those given in Fig. 3. Values are means of three biological replicates with error bars (SDs). The same treatment with different letters is significantly different at the 0.05 probability level at different stages."

Fig. 6

Effects of shading on the activity of biosynthesis related enzyme of anthocyanin in seed coat of green mung bean and black mung bean Abbreviations are the same as those given in Fig. 3. Values are means of three biological replicates with error bars (SDs). The same treatment with different letters is significantly different at the 0.05 probability level at different stages."

Table 5

Correlation coefficients between anthocyanin content and related gene expression and enzymatic activity"

指标
Index
总花青素
Total
anthocyanin
飞燕草色素
Delphinidin
矢车菊色素
Cyanidin
矮牵牛色素
Petunidin
原花青素
Procyanidine
天竺葵色素
Pelargonidin
芍药花色素
Peonidin
基因相对表达量
Relative expression
level of genes
PAL 0.97** 0.99** 0.98** 0.99** 0.33 0.63 0.82**
C4H 0.89** 0.96** 0.92** 0.95** 0.46 0.73* 0.90**
4CL 0.93** 0.98** 0.95** 0.98** 0.37 0.66 0.86**
CHS 0.74* 0.84** 0.78** 0.84** 0.61 0.80** 0.91**
CHI 0.37 0.50 0.42 0.50 0.85** 0.86** 0.83**
F3H 0.01 0.02 -0.01 0.02 0.73* 0.62 0.45
F3'H 0.99** 0.98** 0.99** 0.99** 0.33 0.63 0.80**
F3'5'H 0.92** 0.93** 0.91** 0.94** 0.43 0.69 0.86**
DFR 0.94** 0.94** 0.93** 0.97** 0.42 0.69 0.85**
LDOX 0.93** 0.94** 0.93** 0.96** 0.44 0.70* 0.86**
UFGT 0.84** 0.82** 0.83** 0.83** 0.49 0.72* 0.81**
酶活性
Activity
of enzymes
PAL 0.87** 0.93** 0.88** 0.91** 0.42 0.69 0.87**
CHI 0.43 0.08 0.01 0.08 0.65 0.54 0.44
UFGT 0.77** 0.89** 0.83** 0.87** 0.44 0.69 0.87**
[1] 王建花, 张耀文, 程须珍, 王丽侠. 绿豆分子遗传图谱构建及若干农艺性状的QTL定位分析. 作物学报, 2017, 43: 1096-1102.
doi: 10.3724/SP.J.1006.2017.01096
Wang J H, Zhang Y W, Cheng X Z, Wang L X. Construction of new genetic map and identification of QTLs related to agronomic traits in mung bean. Acta Agron Sin, 2017, 43: 1096-1102. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.01096
[2] 党科, 宫香伟, 吕思明, 赵冠, 田礼欣, 靳飞, 杨璞, 冯佰利, 高小丽. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响. 作物学报, 2021, 47: 1175-1187.
doi: 10.3724/SP.J.1006.2021.04148
Dang K, Gong X W, Lyu S M, Zhao G, Tian L X, Jin F, Yang P, Feng B L, Gao X L. Effects of nitrogen application rate on photosynthetic characteristics and yield of mung bean under the proso millet and mung bean intercropping. Acta Agron Sin, 2021, 47: 1175-1187. (in Chinese with English abstract)
[3] 宫香伟, 党科, 李境, 罗艳, 赵冠, 杨璞, 高小丽, 高金锋, 王鹏科, 冯佰利. 糜子绿豆间作模式下糜子光合物质生产及水分利用效率. 中国农业科学, 2019, 52: 4139-4153.
Gong X W, Dang K, Li J, Luo Y, Zhao G, Yang P, Gao X L, Gao J F, Wang P K, Feng B L. Effects of different intercropping patterns on photosynthesis production characteristics and water use efficiency of proso millet. Sci Agric Sin, 2019, 52: 4139-4153. (in Chinese with English abstract)
[4] 王丽侠, 程须珍, 王素华. 绿豆种质资源、育种及遗传研究进展. 中国农业科学, 2009, 42: 1519-1527.
Wang L X, Cheng X Z, Wang S H. Advances in research on genetic resources, breeding and genetics of mungbean (Vigna radiata L.). Sci Agric Sin, 2009, 42: 1519-1527. (in Chinese with English abstract)
[5] 左锋, 毛小雨, 许馨予, 杨鹄隽, 刘灵飞, 钱丽丽. 添加萌发绿豆粉对面包品质的影响研究. 中国粮油学报, 2020, 35(8): 38-44.
Zuo F, Mao X Y, Xu X Y, Yang H J, Liu L F, Qian L L. Study on effects of germination mung bean powder on bread quality. J Chin Cereals Oils Assoc, 2020, 35(8): 38-44. (in Chinese with English abstract)
[6] 罗磊, 姬青华, 焦昆鹏, 朱文学, 关宁宁, 薛依涵. 绿豆皮黄酮的提取纯化及其抗氧化研究. 中国粮油学报, 2017, 32(9): 109-115.
Luo L, Ji Q H, Jiao K P, Zhu W X, Guan N N, Xie Y H. Extraction purification and antioxidation of flavonoids from mung bean hull. J Chin Cereals Oils Assoc, 2017, 32(9): 109-115. (in Chinese with English abstract)
[7] 廉雪.绿豆种皮颜色遗传分析及相关基因的定位. 山西大学硕士学位论文, 山西太原, 2020.
Lian X. Genetic Analysis of Seedcoat Color of Mungbean and Location of Related Genes. MS Thesis of Shanxi University, Taiyuan, Shanxi, China, 2020. (in Chinese with English abstract)
[8] 庄维兵, 刘天宇, 束晓春, 渠慎春, 翟恒华, 王涛, 张凤娇, 王忠. 植物体内花青素苷生物合成及呈色的分子调控机制. 植物生理学报, 2018, 54: 1630-1644.
Zhuang W B, Liu T Y, Shu X C, Qu S C, Zhai H H, Wang T, Zhang F J, Wang Z. The molecular regulation mechanism of anthocyanin biosynthesis and coloration in plants. Acta Phytophysiol Sin, 2018, 54: 1630-1644 (in Chinese with English abstract).
[9] 王鸿雪, 刘天宇, 庄维兵, 王忠, 朱林, 渠慎春, 翟恒华. 花青素苷在植物逆境响应中的功能研究进展. 农业生物技术学报, 2020, 28: 174-183.
Wang H X, Liu T Y, Zhuang W B, Wang Z, Zhu L, Qu S C, Zhai H H. Research advances in the function of anthocyanin in plant stress response. J Agric Biotechnol, 2020, 28: 174-183. (in Chinese with English abstract)
[10] 许倩, 张晨, 吴嘉维, 欧阳嘉. 花青素的生物合成研究进展. 林产化学与工业, 2020, 40(3): 1-11.
Xu Q, Zhang C, Wu J W, Ou-yang J. Research progress in biosynthesis of anthocyanins. Chem Ind For Prod, 2020, 40(3): 1-11. (in Chinese with English abstract)
[11] Lloyd A, Walbot V, Davis R. Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and C1. Science, 1992, 258: 1773-1775.
pmid: 1465611
[12] Xie X B, Li S, Zhang R F, Zhao J, Chen Y C, Zhao Q, Yao Y X, You C X, Zhang X S, Hao Y J. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. Plant Cell Environ, 2012, 35: 1884-1897.
doi: 10.1111/j.1365-3040.2012.02523.x
[13] Bai Y C, Li C L, Zhang J W, Li S J, Luo X P, Yao H P, Chen H, Zhao H X, Park S U, Wu Q. Characterization of two tartary buckwheat R2R3-MYB transcription factors and their regulation of proanthocyanidin biosynthesis. Physiol Plant, 2014, 152: 431-440.
doi: 10.1111/ppl.12199
[14] Vetten N D, Quattrocchio F, Mol J, Koes R. The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals. Genes Dev, 1997, 11: 1422-1434.
doi: 10.1101/gad.11.11.1422
[15] Zhao M G, Li J, Zhu L, Chang P, Li L L, Zhang L Y. Identification and characterization of MYB-bHLH-WD40 regulatory complex members controlling anthocyanidin biosynthesis in blueberry fruits development. Genes, 2019, 10: 496.
doi: 10.3390/genes10070496
[16] Zhou H, Wang K L, Wang H L, Gu C, Dare A P, Espley R V, He H P, Allan A C, Han Y P. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. Plant J, 2015, 82: 105-121.
doi: 10.1111/tpj.12792
[17] Liu C C, Chi C, Jin L J, Zhu J, Yu J Q, Zhou Y H. The bZip transscription factor HY5 mediates CRY1a-induced anthocyanin biosynthesis in tomato. Plant Cell Environ, 2018, 41: 1762-1775.
doi: 10.1111/pce.13171
[18] Lalusin A G, Nishita K, Kim S-H, Ohta M, Fujimura T. A new MADS-box gene (IbMADS10) from sweet potato (Ipomoea batatas (L.) Lam.) is involved in the accumulation of anthocyanin. Mol Genet Genomics, 2006, 275: 44-54.
doi: 10.1007/s00438-005-0080-x
[19] Ren Y R, Zhao Q, Yang Y Y, Zhang T E, Wang X F, You C X, Hao Y J. The apple 14-3-3 protein MdGRF11 interacts with the BTB protein MdBT2 to regulate nitrate deficiency-induced anthocyanin accumulation. Hortic Res, 2021, 8: 22.
doi: 10.1038/s41438-020-00457-z
[20] 侯泽豪, 王书平, 魏淑东, 刘志雄, 方正武. 植物花青素生物合成与调控的研究进展. 广西植物, 2017, 37: 1603-1613.
Hou Z H, Wang S P, Wei S D, Liu Z X, Fang Z W. Anthocyanin biosynthesis and regulation in plants. Guihaia, 2017, 37: 1603-1613. (in Chinese with English abstract)
[21] 潘晓琴, 宋世威. 光环境影响植物花青素生物合成研究进展. 植物学研究, 2019, 8: 118-125.
Pan X Q, Song S W. Research advance on the effects of light environment on anthocyanin biosynthesis in plants. Bot Res, 2019, 8: 118-125. (in Chinese with English abstract)
[22] 赵霞, 刘然方. 黑米灌浆特性对花青素积累的影响. 西北农林科技大学学报(自然科学版), 2021, 49(8): 51-58.
Zhao X, Liu R F. Effect of grain filling characteristics on anthocyanin accumulation in black rice. J Northwest A&F Univ (Nat Sci Edn), 2021, 49(8): 51-58. (in Chinese with English abstract)
[23] Ma C, Zhang J, Yuan J L, Guo J R, Xiong Y, Feng Y L. Differential expression of microRNAs are responsive to drought stress and exogenous methyl jasmonate in wheat (Triticum aestivum). Int J Agric Biol, 2019, 22: 475-486.
[24] Lister C E, Lancaster J E, Walker J R L. Developmental changes in enzymes of flavonoid biosynthesis in the skins of red and green apple cultivars. J Sci Food Agric, 2015, 71: 313-320.
doi: 10.1002/(SICI)1097-0010(199607)71:3<313::AID-JSFA586>3.0.CO;2-N
[25] 赵善仓, 刘宾, 赵领军, 郭栋梁, 毛江胜, 郭长英, 任凤山, 王宪泽, 田纪春. 蓝、紫粒小麦籽粒花色苷组成分析. 中国农业科学, 2010, 43: 4072-4080.
Zhao S C, Liu B, Zhao L J, Guo D L, Mao J S, Guo C Y, Ren F S, Wang X Z, Tian J C. Research of anthocyanin composition in blue and purple wheat grains. Sci Agric Sin, 2010, 43: 4072-4080. (in Chinese with English abstract)
[26] Zhao X Y, Corrales M, Zhang C, Hu X S, Ma Y, Tauscher B. Composition and thermal stability of anthocyanins from chinese purple corn (Zea mays L.). J Agric Food Chem, 2008, 56: 10761-10766.
doi: 10.1021/jf8025056
[27] 殷丽琴, 彭云强, 钟成, 付绍红, 杨进, 黄敏, 余勤, 韦献雅, 牛应泽. 高效液相色谱法测定8个彩色马铃薯品种中花青素种类和含量. 食品科学, 2015, 36(18): 143-147.
Yin L Q, Peng Y Q, Zhong C, Fu S H, Ying J, Huang M, Yu Q, Wei X Y, Niu Y Z. Determination of anthocyanidin composition of different pigmented potato (Solanum tuberosum L.) cultivars by HPLC. Food Sci, 2015, 36(18): 143-147. (in Chinese with English abstract)
[28] 赵善仓, 万春燕, 董燕婕, 李增梅, 邓立刚, 于涛, 王燕, 张树秋. 黑花生种皮花色苷组成成分的UPLC/Q-TOF分析研究. 花生学报, 2015, 44(3): 1-6.
Zhao S C, Wan C Y, Dong Y J, Li Z M, Deng L G, Yu T, Wang Y, Zhang S Q. The study of anthocyanins composition in black peanut testae by UPLC/Q-TOF methods. J Peanut Sci, 2015, 44(3): 1-6. (in Chinese with English abstract)
[29] Forkmann G, Heller W, Grisebach H. Anthocyanin biosynthesis in flowers of matthiola incana flavanone 3- and flavonoid 3'-hydroxylases. Zeitschrift Für Naturforsch C, 1980, 35: 691-695.
doi: 10.1515/znc-1980-9-1004
[30] Yang G H, Zhao X Q, Li B, Liu J Z, Zheng Q, Tong Y P, Li Z S. Molecular cloning and characterization of a DFR from developing seeds of blue-grained wheat in anthocyanin biosynthetic pathway. Acta Bot Sin, 2003, 45: 1329-1338.
[31] Yang G H, Li B, Gao J W, Liu J Z, Zhao X, Qiang, Zheng Q, Tong Y P, Li Z S. Cloning and expression of two chalcone synthase and a flavonoid 3'5'-hydroxylase 3'-end cDNAs from developing seeds of blue-grained wheat involved in anthocyanin biosynthetic pathway. Acta Bot Sin, 2004, 46: 588-594.
[32] Jeewani D C.蓝粒小麦中花青素生物合成基因的基因定位及转录组分析. 西北农林科技大学博士学位论文, 陕西杨凌, 2017.
Jeewani D C. Mapping and Transcriptome Analysis of Genes Involved in Anthocyanin Biosynthesis of Blue Wheat. PhD Dissertation of Northwest A&F University, Yangling, Shanxi, China, 2017.. (in Chinese with English abstract)
[33] 王海伟, 王振林, 王平, 王树刚, 黄玮, 武玉国, 孙兰珍, 尹燕枰. 灌浆期遮光对不同粒色小麦籽粒花青素积累与相关酶活性的影响. 作物学报, 2011, 37: 1093-1110.
Wang H W, Wang Z L, Wang P, Wang S G, Huang W, Wu Y G, Sun L Z, Yin Y P. Effect of shading post anthesis on anthocyanin accumulation and activities of related enzymes in colored-grain wheat. Acta Agron Sin, 2011, 37: 1093-1100. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2011.01093
[34] 亓燕红.彩色玉米籽粒中参与花青素合成基因的表达分析. 山东农业大学硕士学位论文, 山东泰安, 2011.
Qi Y H. Expression Analysis of the Genes Involved in Anthocyanin Pathway in Colored Maize Grain. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2011.. (in Chinese with English abstract)
[35] 袁利.UV-C处理对紫甘蓝花青素合成的影响以及花青素酰基转移酶的克隆. 中国农业科学院硕士学位论文, 北京, 2018.
Yuan L. Study on Effect from UV-C Treatment on Anthocyanin Biosynthesis and the Cloning of Anthocyanin Acyltransferase of Red Cabbage. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2018. (in Chinese with English abstract)
[36] Hou F Y, Wang Q M, Dong S X, Li A X, Zhang H Y, Xie B T, Zhang L M. Accumulation and gene expression of anthocyanin in storage roots of purple-freshed sweet potato [Ipomoea batatas (L.) Lam.] under weak light conditions. Agric Sci China, 2010, 11: 1588-1593.
[37] 吴翠平.光照对紫马铃薯块茎花青素合成及品质的影响. 四川农业大学硕士学位论文, 四川雅安, 2016.
Wu C P. Effect of Light on Synthesis of Anthocyanin and Quality of Tuber in Purple Potato. MS Thesis of Sichuan Agricultural University, Ya’an, Sichuan, China, 2016. (in Chinese with English abstract)
[1] LI Jie-Ya, LI Hong-Yan, YE Guang-Ji, SU Wang, SUN Hai-Hong, WANG Jian. Changes of anthocyanins and expression analysis of synthesis-related genes in potato during storage period [J]. Acta Agronomica Sinica, 2022, 48(7): 1669-1682.
[2] TAO Yu, YAO Yu, WANG Kun-Ting, XING Zhi-Peng, ZHAI Hai-Tao, FENG Yuan, LIU Qiu-Yuan, HU Ya-Jie, GUO Bao-Wei, WEI Hai-Yan, ZHANG Hong-Cheng. Combined effects of panicle nitrogen fertilizer amount and shading during grain filling period on grain quality of conventional japonica rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1730-1745.
[3] MA Wen-Jing, LIU Zhen, LI Zhi-Tao, ZHU Jin-Yong, LI Hong-Yang, CHEN Li-Min, SHI Tian-Bin, ZHANG Jun-Lian, LIU Yu-Hui. Genome-wide identification and expression analysis of BBX gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2022, 48(11): 2797-2812.
[4] NIU Na, LIU Zhen, HUANG Peng-Xiang, ZHU Jin-Yong, LI Zhi-Tao, MA Wen-Jing, ZHANG Jun-Lian, BAI Jiang-Ping, LIU Yu-Hui. Genome-wide identification and expression analysis of potato GAUT gene family [J]. Acta Agronomica Sinica, 2021, 47(12): 2348-2361.
[5] YANG Xiao-Meng, LI Xia, PU Xiao-Ying, DU Juan, Muhammad Kazim Ali, YANG Jia-Zhen, ZENG Ya-Wen, YANG Tao. QTL mapping for total grain anthocyanin content and 1000-kernel weight in barley recombinant inbred lines population [J]. Acta Agronomica Sinica, 2020, 46(01): 52-61.
[6] Huan TAN,Yu-Hui LIU,Li-Xia LI,Li WANG,Yuan-Ming LI,Jun-Lian ZHANG. Cloning and Functional Analysis of R2R3 MYB Genes Involved in Anthocyanin Biosynthesis in Potato Tuber [J]. Acta Agronomica Sinica, 2018, 44(7): 1021-1031.
[7] LIU Xi-Wei,ZHANG Min,LI Yong,ZHANG Yu-Chun,SONG Xiao-Jun,ZHAO Cheng,CAI Rui-Guo. Effects of Post-Flowering Shading Intensities on Starch Components and Physicochemical Properties in Waxy and Non-waxy Wheats [J]. Acta Agron Sin, 2017, 43(05): 777-786.
[8] XU Yu-Chao,HOU Xi-Lin,XU Wei-Wei,SHEN Lu-Lu,ZHANG Shi-Lin,LIU Shi-Tuo,HU Chun-Mei. Cloning and Expression Analysis of Anthocyanidin Synthase Gene BrcANS from Purple Non-heading Chinese Cabbage [J]. Acta Agron Sin, 2016, 42(06): 850-859.
[9] ZHOU Tian-Shan,WANG Xin-Chao,YU You-Ben,XIAO Yao,QIAN Wen-Jun,XIAO Bin,YANG Ya-Jun. Correlation Analysis between Total Catechins (or Anthocyanins) and Expression Levels of Genes Involved in Flavonoids Biosynthesis in Tea Plant with Purple Leaf [J]. Acta Agron Sin, 2016, 42(04): 525-531 .
[10] CHEN Chuan-Yong,WANG Rong-Huan,ZHAO Jiu-Ran,XU Tian-Jun,WANG Yuan-Dong,LIU Xiu-Zhi,LIU Chun-Ge,PEI Zhi-Chao,CHENG Guang-Lei,CHEN Guo-Ping. Effects of Shading on Grain-Filling Properties and Yield of Maize at Different Growth Stages [J]. Acta Agron Sin, 2014, 40(09): 1650-1657.
[11] WANG Ya-Jiang,WEI Hai-Yan*,YAN Xi-Ting,GE Meng-Jie,MENG Tian-Yao,ZHANG Hong-Cheng,DAI Qi-Gen,HUO Zhong-Yang,XU Ke,FEI Xin-Ru. Effects of Light, Nitrogen and Their Interaction on Grain Yield and Nitrogen, Phosphorus and Potassium Absorption in Japonica Super Rice [J]. Acta Agron Sin, 2014, 40(07): 1235-1244.
[12] WANG Ya-Jiang,GE Meng-Jie,YAN Xi-Ting,WEI Hai-Yan,ZHANG Hong-Cheng,DAI Qi-Gen,HUO Zhong-Yang,XU Ke. Effects of Light, Nitrogen and Their Interaction on Grain Yield and Matter Production Characteristics of Japonica Super Rice [J]. Acta Agron Sin, 2014, 40(01): 154-165.
[13] WANG Yi,YANG Wen-Yu,ZHANG Xia,YONG Tai-Wen,LIU Wei-Guo,SHU Ben-Ying. Effects of Shading at Different Growth Stages on Different Traits and Yield of Soybean [J]. Acta Agron Sin, 2013, 39(10): 1871-1879.
[14] WANG Wu-Bin,HE Qing-Yuan,YANG Hong-Yan,XIANG Shi-Hua,XING Guang-Nan,ZHAO Tuan-Jie,GAI Jun-Yi. Identification of Wild Segments Associated with Stem Termination, Pod Color and Seed Coat Color in Soybean [J]. Acta Agron Sin, 2013, 39(07): 1155-1163.
[15] WANG Li-Xia,CHENG Xu-Zhen,WANG Su-Hua,LIU Yan. Inheritance of Several Traits in Mungbean (Vigna radiata) [J]. Acta Agron Sin, 2013, 39(07): 1172-1178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[2] Qi Zhixiang;Yang Youming;Zhang Cunhua;Xu Chunian;Zhai Zhixi. Cloning and Analysis of cDNA Related to the Genes of Secondary Wall Thickening of Cotton (Gossypium hirsutum L.) Fiber[J]. Acta Agron Sin, 2003, 29(06): 860 -866 .
[3] NI Da-Hu;YI Cheng-Xin;LI Li;WANG Xiu-Feng;ZHANG Yi;ZHAO Kai-Jun;WANG Chun-Lian;ZHANG Qi;WANG Wen-Xiang;YANG Jian-Bo. Developing Rice Lines Resistant to Bacterial Blight and Blast with Molecular Marker-Assisted Selection[J]. Acta Agron Sin, 2008, 34(01): 100 -105 .
[4] DAI Xiao-Jun;LIANG Man-Zhong;CHEN Liang-Bi. Comparison of rDNA Internal Transcribed Spacer Sequences in Oryza sativa L.[J]. Acta Agron Sin, 2007, 33(11): 1874 -1878 .
[5] WANG Bao-Hua;WU Yao-Ting;HUANG Nai-Tai;GUO Wang-Zhen;ZHU Xie-Fei;ZHANG Tian-Zhen. QTL Analysis of Epistatic Effects on Yield and Yield Component Traits for Elite Hybrid Derived-RILs in Upland Cotton[J]. Acta Agron Sin, 2007, 33(11): 1755 -1762 .
[6] WANG Chun-Mei;FENG Yi-Gao;ZHUANG Li-Fang;CAO Ya-Ping;QI Zeng-Jun;BIE Tong-De;CAO Ai-Zhong;CHEN Pei-Du. Screening of Chromosome-Specific Markers for Chromosome 1R of Secale cereale, 1V of Haynaldia villosa and 1Rk#1 of Roegneria kamoji[J]. Acta Agron Sin, 2007, 33(11): 1741 -1747 .
[7] Zhao Qinghua;Huang Jianhua;Yan Changjing. A STUDY ON THE POLLEN GERMINATION OF BRASSICA NAPUS L.[J]. Acta Agron Sin, 1986, (01): 15 -20 .
[8] ZHOU Lu-Ying;LI Xiang-Dong;WANG Li-Li;TANG Xiao;LIN Ying-Jie. Effects of Different Ca Applications on Physiological Characteristics, Yield and Quality in Peanut[J]. Acta Agron Sin, 2008, 34(05): 879 -885 .
[9] WANG Li-Xin; LI Yun-Fu; CHANG Li-Fang; HUANG Lan ;; LI Hong-Bo ; GE Ling-Ling; Liu Li-Hua ;; YAO Ji ;; ZHAO Chang-Ping ;. Method of ID Constitution for Wheat Cultivars[J]. Acta Agron Sin, 2007, 33(10): 1738 -1740 .
[10] ZHENG Tian-Qing;XU Jian-Long;FU Bing-Ying;GAO Yong-Ming;Satish VERUKA;Renee LAFITTE;ZHAI Hu-Qu;WAN Jian-Min;ZHU Ling-Hua;LI Zhi-Kang. Preliminary Identification of Genetic Overlaps between Sheath Blight Resistance and Drought Tolerance in the Introgression Lines from Directional Selection[J]. Acta Agron Sin, 2007, 33(08): 1380 -1384 .