Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (1): 119-128.doi: 10.3724/SP.J.1006.2023.12089
• CROP GENETICS & BREEDING ·GERMPLASM RESOURCES ·MOLECULAR GENETICS • Previous Articles Next Articles
ZHAO Ling(), LIANG Wen-Hua, ZHAO Chun-Fang, WEI Xiao-Dong, ZHOU Li-Hui, YAO Shu, WANG Cai-Lin, ZHANG Ya-Dong()
[1] | 郭梁, 张振华, 庄杰云. 水稻抽穗期QTL及其与产量性状遗传控制的关系. 中国水稻科学, 2012, 26: 235-245. |
Guo L, Zhang Z H, Zhuang J Y. Quantitative trait loci for heading date and their relationship with the genetic control of yield traits in rice (Oryza sativa). Chin J Rice Sci, 2012, 26: 235-245. (in Chinese with English abstract)
doi: 10.3969/j.issn.10017216.2012.02.014 |
|
[2] |
Zhang J, Zhou X, Yan W, Zhang Z Y, Lu L, Han Z M, Zhao H, Liu H Y, Song P, Hu Y, Shen G J He Q, Guo S B, Gao S P, Wang G W, Xing Y Z. Combinations of the Ghd7, Ghd8 and Hd1 genes largely define the eco-geographical adaptation and yield potential of cultivated rice. New Phytol, 2015, 208: 1056-1066.
doi: 10.1111/nph.13538 pmid: 26147403 |
[3] | 杨德卫, 陈壬杰, 程朝平, 郑向华, 叶宁, 叶新福, 黄凤凰. 水稻抽穗期基因的鉴定与遗传调控网络研究进展. 分子植物育种, 2019, 17: 4656-4660. |
Yang D W, Chen R J, Cheng C P, Zheng X H, Ye N, Ye X F, Huang F H. The progress of gene identification and genetic regulation mechanism for heading date in rice (Oryza sativa L.). Mol Plant Breed, 2019, 17: 4656-4660 (in Chinese with English abstract ) | |
[4] | 胡时开, 苏岩, 叶卫军, 郭龙彪. 水稻抽穗期遗传与分子调控机制研究进展. 中国水稻科学, 2012, 26: 373-382. |
Hu S K, Su Y, Ye W J, Guo L B. Advances in genetic analysis and molecular regulation mechanism of heading date in rice (Oryza sativa L.). Chin J Rice Sci, 2012, 26: 373-382. (in Chinese with English abstract) | |
[5] |
Wei H, Wang X L, Xu H, Wang L. Molecular basis of heading date control in rice. aBIOTECH, 2020, 1: 219-232.
doi: 10.1007/s42994-020-00019-w |
[6] |
Yang D W, Cheng C P, Zheng X H, Ye X F, Ye N, Huang F H. Identification and fine mapping of a major QTL, qHD19, that plays pleiotropic roles in regulating the heading date in rice. Mol Breed, 2020, 40: 1-12.
doi: 10.1007/s11032-019-1080-6 |
[7] | 蒋丹, 洪广成, 陈倩, 刘石锋, 秦小健. 水稻抽穗期分子调控研究进展. 分子植物育种, 2019, 17: 7071-7077. |
Jiang D, Hong G C, Chen Q, Liu S F, Qin X J. Research progress in molecular regulation of heading date in rice (Oryza sativa). Mol Plant Breed, 2019, 17: 7071-7077. (in Chinese with English abstract) | |
[8] | Xu Z P, Chen Z A, Wang R X, Miao Y X, Gao H L, Tang S Z, Zhang H G, Liu Q Q. Characterization and fine-mapping of qHd2-1, a minor quantitative locus that affects heading date under long-day conditions in rice (Oryza sativa L.). Mol Breed, 2020, 40: 521-532. |
[9] | 龚晓平, 杨正林, 赵芳明, 钟秉强, 凌英华, 何光华. 一个水稻抽穗期主基因hd(t)的遗传分析及分子定位. 作物学报, 2007, 33: 1906-1909. |
Gong X P, Yang Z L, Zhao F M, Zhong B Q, Ling Y H, He G H. Genetic analysis and molecular mapping of a dominant heading period gene hd(t). Acta Agron Sin, 2007, 33: 1906-1909. (in Chinese with English abstract) | |
[10] |
王玉博, 王悦, 刘雄, 唐文帮. 水稻光周期调控开花的研究进展. 中国水稻科学, 2021, 35: 207-224.
doi: 10.16819/j.1001-7216.2021.0514 |
Wang Y B, Wang Y, Liu X, Tang W B. Research progress of photoperiod regulation in rice flowering. Chin J Rice Sci, 2021, 35: 207-224. (in Chinese with English abstract)
doi: 10.16819/j.1001-7216.2021.0514 |
|
[11] |
Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasakia T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 2473-2484.
doi: 10.1105/tpc.12.12.2473 |
[12] |
Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev, 2004, 18: 926-936.
doi: 10.1101/gad.1189604 |
[13] |
Fujino K. Days to heading, controlled by the heading date genes, hd1 and dth8, limits rice yield-related traits in Hokkaido, Japan. Breed Sci, 2020, 70: 277-282.
doi: 10.1270/jsbbs.19151 |
[14] |
Zhang B, Liu H Y, Qi F X, Zhang Z Y, Li Q P, Han Z M, Xing Y Z. Genetic interactions among Ghd7, Ghd8, OsPRR37 and Hd1 contribute to large variation in heading date in rice. Rice, 2019, 12: 48.
doi: 10.1186/s12284-019-0314-x pmid: 31309345 |
[15] |
Zong W, Ren D, Huang M H, Sun K L, Feng J L, Zhao J, Xiao D D, Xie W B, Liu S Q, Zhang H, Qiu R, Tang W J, Yang R Q, Chen H Y, Xie X R, Chen L T, Liu Y G, Guo J X. Strong photo period sensitivity is controlled by cooperation and competition among Hd1, Ghd7and DTH8 in rice heading. New Phytol, 2021, 229: 1635-1649.
doi: 10.1111/nph.16946 |
[16] |
Zhou S R, Zhu S S, Cui S, Hou H G, Wu H Q, Hao B Y, Cai L, Xu Z, Liu L L, Jiang L, Wang H Y, Wan J M. Transcriptional and post-transcriptional regulation of heading date in rice. New Phytol, 2021, 230: 943-956.
doi: 10.1111/nph.17158 pmid: 33341945 |
[17] | 唐立群, 肖层林, 王伟平. SNP分子标记的研究及其应用进展. 中国农学通报, 2012, 28(12): 154-158. |
Tang L Q, Xiao C L, Wang W P. Research and application progress of SNP markers. Chin Agric Sci Bull, 2012, 28(12): 154-158. (in Chinese with English abstract) | |
[18] |
He Q, Zhi H, Tang S, Xing L, Wang S Y, Wang H G, Zhang A Y, Li Y H, Gao M, Zhang H J, Chen G Q, Dai S T, Li J X, Yang J J, Liu H F, Zhang W, Jia Y C, Li S J, Liu J R, Qiao Z J, Guo E H, Jia G Q, Liu J, Diao X M. QTL mapping for foxtail millet plant height in multi-environment using an ultra-high density bin map. Theor Appl Genet, 2021, 134: 557-572.
doi: 10.1007/s00122-020-03714-w pmid: 33128073 |
[19] |
Han Z M, Hu G, Liu H, Liang F M, Yang L, Zhao H, Zhang Q H, Li Z X, Zhang Q F, Xing Y Z. Bin-based genome wide association analyses improve power and resolution in QTL mapping and identify favorable alleles from multiple parents in a four-way MAGIC rice population. Theor Appl Genet, 2020, 133: 59-71.
doi: 10.1007/s00122-019-03440-y |
[20] | 魏祥进, 徐俊锋, 江玲, 王洪俊, 周振玲, 翟虎渠, 万建民. 我国水稻主栽品种抽穗期多样性的遗传分析. 作物学报, 2012, 38: 10-22. |
Wei X J, Xu J F, Jiang L, Wang H J, Zhou Z L, Zhai H Q, Wan J M. Genetic analysis for the diversity of heading date of cultivated rice in China. Acta Agron Sin, 2012, 38: 10-22. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.00010 |
|
[21] | 张亚东, 梁文化, 赫磊, 赵春芳, 朱镇, 陈涛, 赵庆勇, 赵凌, 姚姝, 周丽慧, 路凯, 王才林. 水稻RIL群体高密度遗传图谱构建及粒型QTL定位. 中国农业科学, 2021, 54: 5163-5176. |
Zhang Y D, Liang W H, He L, Zhao C F, Zhu Z, Chen T, Zhao Q Y, Zhao L, Yao S, Zhou L H, Lu K, Wang C L. Construction of high-density genetic map and QTL analysis of grain shape in rice RIL population. Sci Agric Sin, 2021, 54: 5163-5176. (in Chinese with English abstract) | |
[22] |
Meng L, Li H H, Zhang L Y, Wang J K. QTL ICIMAPPING: integrated software for genetic linkage map construction and quantitative trait locus mapping in bi-parental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001 |
[23] | 王建康. 数量性状基因的完备区间作图方法. 作物学报, 2009, 35: 239-245. |
Wang J K. Inclusive composite interval mapping of quantitative trait genes. Acta Agron Sin, 2009, 35: 239-245. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.00239 |
|
[24] | McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13. |
[25] | 董骥驰, 杨靖, 郭涛, 陈立凯, 陈志强, 王慧. 基于高密度Bin图谱的水稻抽穗期QTL定位. 作物学报, 2018, 44: 938-946. |
Dong J C, Yang J, Guo T, Chen L K, Chen Z Q, Wang H. QTL mapping for heading date in rice using high-density Bin map. Acta Agron Sin, 2018, 44: 938-946 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.00938 |
|
[26] | 李冬秀, 杨靖, 孙凯, 李丹丹, 杨瑰丽, 郭涛, 王慧, 陈志强. 基于高密度遗传图谱定位新的水稻抽穗期QTLs. 西北农林科技大学学报, 2020, 48(8): 44-49. |
Li D X, Yang Q, Sun K, Li D D, Yang G L, Guo T, Wang H, Chen Z Q. Mapping new rice heading date QTLs based on high-density genetic map. J Northwest A&F Univ (Nat Sci Edn), 2020, 48(8): 44-49. (in Chinese with English abstract) | |
[27] |
Zhang M, Zhou Z P, Chen Y Y, Cao Y R, Deng C W, Xue P, Zhan X D, Cheng S H, Cao L Y, Zhang Y X. Finding new addictive QTL for yield traits based on a high-density genetic map in hybrid rice. Plant Growth Regul, 2021, 93: 105-115.
doi: 10.1007/s10725-020-00669-2 |
[28] |
Li X K, Wu L, Wang J H, Sun J, Xia X H, Geng X, Wang X H, Xu Z J, Xu Q. Genome sequencing of rice subspecies and genetic analysis of recombinant lines reveals regional yield- and quality-associated loci. BMC Biol, 2018, 16: 102.
doi: 10.1186/s12915-018-0572-x pmid: 30227868 |
[29] |
Moncada P, Martinez C P, Borrero J, Chatel M, Gauch H, Guimaraes E, Tohme J, McCouch S R. Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet, 2001, 102: 41-42.
doi: 10.1007/s001220051616 |
[30] |
Lin H X, Yamamoto T, Sasaki T, Yano M. Characterization and detection of epistatic interactions of 3 QTLs, Hd1, Hd2, and Hd3, controlling heading date in rice using nearly isogenic lines. Theor Appl Genet, 2000, 101: 1021-1028.
doi: 10.1007/s001220051576 |
[31] |
Xiao J H, Li J, Grandillo S, Ahn S N, Yuan L, Tanksley S D, McCouch S R. Identification of trait improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genet, 1998, 150: 899-909.
doi: 10.1093/genetics/150.2.899 |
[32] |
Yu S B, Li J X, Xu C G, Tan Y F, Li X H, Zhang Q. Identification of quantitative trait loci and epistatic interactions for plant height and heading date in rice. Theor Appl Genet, 2002, 104: 619-625.
pmid: 12582666 |
[33] |
Li Z K, Yu S B, Lafitte H R, Huang N, Courtois B, Hittalmani S, Vijayakumar C H, Liu G F, Wang G C, Shashidhar H E, Zhuang J Y, Zheng K L, Singh V P, Sidhu J S, Srivantaneeyakul S, Khush G S. QTL × environment interactions in rice: I. Heading date and plant height. Theor Appl Genet, 2003, 108: 141-153.
pmid: 12961067 |
[34] |
Nagata K, Shimizu H, Terao T. Quantitative trait loci for nonstructural carbohydrate accumulation in leaf sheaths and culms of rice (Oryza sativa L.) and their effects on grain filling. Breed Sci, 2002, 52: 275-283.
doi: 10.1270/jsbbs.52.275 |
[35] |
Zhou Y, Li W, Wu W, Chen Q, Mao D, Worland A J. Genetic dissection of heading time and its components in rice. Theor Appl Genet, 2001, 102: 1236-1242.
doi: 10.1007/s001220100539 |
[36] |
Sheng P K, Wu F Q, Tan J J, Zhang H, Ma W W, Chen L P, Wang J, Wang J, Zhu S S, Guo X P, Wang J L, Zhang X, Cheng Z J, Bao Y Q, Wu C Y, Liu X M, Wan J M. A CONSTANS-like transcriptional activator, OsCOL13, functions as a negative regulator of flowering down stream of Osphy B and upstream of Ehd1 in rice. Plant Mol Biol, 2016, 92: 209-222
doi: 10.1007/s11103-016-0506-3 |
[37] |
Mei H W, Luo L J, Ying C S, Wang Y P, Yu X Q, Guo L B, Paterson A H, Li Z K. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Theor Appl Genet, 2003, 107: 89-101.
pmid: 12721635 |
[38] |
Mei H W, Li Z K, Shu Q Y, Guo L B, Wang Y P, Yu X Q, Ying C S, Luo L J. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross populations. Theor Appl Genet, 2005, 110: 649-659.
pmid: 15647921 |
[39] |
Abdirad S, Majd A, Irian S, Hadidi N, Salekdeh G. H Differential adaptation strategies to different levels of soil water deficit in two upland and lowland genotypes of rice: a physiological and metabolic approach. J Sci Food Agric, 2020, 100: 1458-1469.
doi: 10.1002/jsfa.10153 |
[40] | Weng Q M, Wu W R, Li W M, Liu H Q, Tang D Z, Zhou Y C, Zhang Q F. Construction of an RFLP linkage map of rice using DNA probes from two different sources. J Fujian Agric Univ, 2000, 29: 129-133. |
[1] | XU Kai, ZHENG Xing-Fei, ZHANG Hong-Yan, HU Zhong-Li, NING Zi-Lan, LI Lan-Zhi. Genome-wide association analysis of indica-rice heading date based on NCII genetic mating design [J]. Acta Agronomica Sinica, 2023, 49(1): 86-96. |
[2] | XUE Jiao, LU Dong-Bai, LIU Wei, LU Zhan-Hua, WANG Shi-Guang, WANG Xiao-Fei, FANG Zhi-Qiang, HE Xiu-Ying. Genetic analysis and fine mapping of a bacterial blight resistance major QTL qBB-11-1 in high-quality rice ‘Yuenong Simiao’ [J]. Acta Agronomica Sinica, 2022, 48(9): 2210-2220. |
[3] | HUANG Yi-Wen, SUN Bin, CHENG Can, NIU Fu-An, ZHOU Ji-Hua, ZHANG An-Peng, TU Rong-Jian, LI Yao, YAO Yao, DAI Yu-Ting, XIE Kai-Zhen, CHEN Xiao-Rong, CAO Li-Ming, CHU Huang-Wei. QTL mapping of seed storage tolerance in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2255-2264. |
[4] | LIU Cheng, ZHANG Ya-Xuan, CHEN Xian-Lian, HAN Wei, XING Guang-Nan, HE Jian-Bo, ZHANG Jiao-Ping, ZHANG Feng-Kai, SUN Lei, LI Ning, WANG Wu-Bin, GAI Jun-Yi. Wild segments associated with 100-seed weight and their candidate genes in a wild chromosome segment substitution line population [J]. Acta Agronomica Sinica, 2022, 48(8): 1884-1893. |
[5] | ZHANG Sheng-Zhong, HU Xiao-Hui, CI Dun-Wei, YANG Wei-Qiang, WANG Fei-Fei, QIU Jun-Lan, ZHANG Tian-Yu, ZHONG Wen, YU Hao-Liang, SUN Dong-Ping, SHAO Zhan-Gong, MIAO Hua-Rong, CHEN Jing. QTLs analysis for reticulation thickness based on reconstruction of three dimensional models in peanut pods [J]. Acta Agronomica Sinica, 2022, 48(8): 1894-1904. |
[6] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[7] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[8] | HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291. |
[9] | YANG Ming, LI Dan-Ting, FAN De-Jia, TAN Song-Juan, CHENG Xia-Nian, LIU Yu-Qiang, WAN Jian-Min. Mapping of QTLs for resistance to white-backed planthopper in Guangxi wild rice Y11 [J]. Acta Agronomica Sinica, 2022, 48(11): 2715-2723. |
[10] | WU Jia-Yi, YUAN Fang, MENG Li-Jiao, LI Chen-Yang, SHI Hong-Song, BAI Yan-Song, WU Xiao-Ru, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. QTL mapping and candidate genes screening of photosynthesis-related traits in Brassica napus L. during seedling stage under aluminum stress [J]. Acta Agronomica Sinica, 2022, 48(11): 2749-2764. |
[11] | SONG Bo-Wen, WANG Chao-Huan, ZHAO Zhe, CHEN Chun, HUANG Ming, CHEN Wei-Xiong, LIANG Ke-Qin, XIAO Wu-Ming. Mapping and analysis of QTLs for grain size in rice based on high density genetic map [J]. Acta Agronomica Sinica, 2022, 48(11): 2813-2825. |
[12] | LIU Yan-Di, ZHAO Bao-Ping, ZHANG Yu, MI Jun-Zhen, WU Jun-Ying, LIU Jing-Hui. Relationship between yield differences of different genotypes of oats and leaf physiological characteristics [J]. Acta Agronomica Sinica, 2022, 48(11): 2953-2964. |
[13] | YAO Jia-Yu, YU Ji-Xiang, WANG Zhi-Qin, LIU Li-Jun, ZHOU Juan, ZHANG Wei-Yang, YANG Jian-Chang. Response of endogenous brassinosteroids to nitrogen rates and its regulatory effect on spikelet degeneration in rice [J]. Acta Agronomica Sinica, 2021, 47(5): 894-903. |
[14] | SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461. |
[15] | WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422. |
|