Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (1): 97-104.doi: 10.3724/SP.J.1006.2023.14239
• CROP GENETICS & BREEDING ·GERMPLASM RESOURCES ·MOLECULAR GENETICS • Previous Articles Next Articles
LI Juan, ZHOU Jing-Ru, CHU Na, SUN Hui-Dong, HUANG Mei-Ting, FU Hua-Ying, GAO San-Ji()
[1] |
Aono A H, Pimenta R J G, Garcia A L B, Correr F H, Hosaka G K, Carrasco M M, Cardoso-Silva C B, Mancini M C, Sforça D A, Dos Santos L B, Nagai J S, Pinto L R, Landell M G A, Carneiro M S, Balsalobre T W, Quiles M G, Pereira W A, Margarido G R A, de Souza A P. The wild sugarcane and sorghum kinomes: Insights into expansion, diversification, and expression patterns. Front Plant Sci, 2021, 12: 668623.
doi: 10.3389/fpls.2021.668623 |
[2] | 刘晓雪, 邬志军. 2020/2021榨季国内外食糖市场回顾与2021/2022榨季展望. 中国糖料, 2021, 43(4): 81-88. |
Liu X X, Wu Z J. Domestic and foreign sugar markets in 2020/2021 crushing season and their prospect for 2021/2022 crushing season. Sugar Crops China, 2021, 43(4): 81-88. (in Chinese with English abstract) | |
[3] | Fontana P D, Fontana C A, Bassi D, Puglisi E, Salazar S M, Vignolo G M, Coccocelli P S. Genome sequence of Acidovorax avenae strain T10_61 associated with sugarcane red stripe in Argentina. Genome Announc, 2016, 4: e01669. |
[4] |
Li X Y, Sun H D, Rott P C, Wang J D, Huang M T, Zhang Q Q, Gao S J. Molecular identification and prevalence of Acidovorax avenae subsp. avenae causing red stripe of sugarcane in China. Plant Pathol, 2018, 67: 929-937.
doi: 10.1111/ppa.12811 |
[5] | Rott P C, Davis M J. Red stripe (top rot). In: Rott P C, Bailey R A, Comstock J C, Croft B J, Saumtally A S, eds. A Guide to Sugarcane Diseases. Montpellier, France: CIRAD/ISSCT, 2000. pp 58-62. |
[6] | 储娜, 孙会东, 周敬如, 傅华英, 李晓燕, 高三基. 甘蔗赤条病及其病原生物学研究进展. 中国糖料, 2020, 42(1): 5. |
Chu N, Sun H D, Zhou J R, Fu H Y, Li X Y, Gao S J. Research advances of sugarcane red stripe disease and its pathogeny biology. Sugar Crops China, 2020, 42(1): 5. (in Chinese with English abstract) | |
[7] |
Fontana P D, Rago A M, Fontana C A, Vignolo G M, Cocconcelli P S, Mariotti J A. Isolation and genetic characterization of Acidovorax avenae from red stripe infected sugarcane in northwestern Argentina. Eur J Plant Pathol, 2013, 137: 525-534.
doi: 10.1007/s10658-013-0263-y |
[8] |
Shan H, Li W, Huang Y, Wang X, Zhang R, Luo Z, Yin J. First detection of sugarcane red stripe caused by Acidovorax avenae subsp. avenae in Yuanjiang, Yunnan, China. Trop Plant Pathol, 2017, 42: 137-141.
doi: 10.1007/s40858-017-0132-x |
[9] |
Loon L, Strien E. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol, 1999, 55(2): 85-97.
doi: 10.1006/pmpp.1999.0213 |
[10] | Joshi V, Joshi N, Vyas A, Jadhav S K. Biocontrol agents second metabolites. Cambridge: Woodhead Publishing, 2021. pp 573-590. |
[11] |
Zribi I, Ghorbel M, Brini F. Pathogenesis related proteins (PRs): from cellular mechanisms to plant defense. Curr Protein Peptide Sci, 2021, 22: 1-17.
doi: 10.2174/138920372201210301112421 |
[12] |
Loon L V, Rep M, Pieterse C. Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol, 2006, 44: 135-162.
pmid: 16602946 |
[13] |
Somssich I E, Schmelzer E, Kawalleck P, Hahlbrock K. Gene structure and in situ transcript localization of pathogenesis-related protein 1 in parsley. Mol General Genetics, 1988, 213: 93-98.
doi: 10.1007/BF00333403 |
[14] |
Liu J J, Ekramoddoullah A. The family 10 of plant pathogenesis-related proteins: their structure, regulation, and function in response to biotic and abiotic stresses. Physiol Mol Plant Pathol, 2006, 68: 3-13.
doi: 10.1016/j.pmpp.2006.06.004 |
[15] |
Bantignies B, Séguin J, Muzac I, Dédaldéchamp F, Gulick F, Ibrahim R. Direct evidence for ribonucleolytic activity of a PR-10-like protein from white lupin roots. Plant Mol Biol, 2000, 42: 871-881.
doi: 10.1023/A:1006475303115 |
[16] |
Souza T P, Dias R O, Silvafilho M C. Defense-related proteins involved in sugarcane responses to biotic stress. Genet Mol Biol, 2017, 40: 360-372.
doi: S1415-47572017000200360 pmid: 28222203 |
[17] | 杨涛, 王艳. 植物病程相关蛋白PR-10的研究进展. 植物生理学报, 2017, 53: 2057-2068. |
Yang T, Wang Y. Research progress of plant pathogenesis related protein PR-10. Plant Physiol J, 2017, 53: 2057-2068. (in Chinese with English abstract) | |
[18] |
Xie Y R, Chen Z Y, Brown R L, Bhatnagar D. Expression and functional characterization of two pathogenesis-related protein 10 genes from Zea mays. J Plant Physiol, 2010, 167: 121-130.
doi: 10.1016/j.jplph.2009.07.004 |
[19] |
He M Y, Xu Y, Cao J L, Zhu Z G, Jiao Y T, Wang Y J, Guan X, Yang Y Z, Xu W R, Fu Z F. Subcellular localization and functional analyses of a PR10 protein gene from Vitis pseudoreticulata in response to Plasmopara viticola infection. Protoplasma, 2013, 250: 129-140.
doi: 10.1007/s00709-012-0384-8 |
[20] | Oloriz M I, Gil V, Rojas L, Portal O, Izquierdo Y, Jiménez E, Höfte M. Sugarcane genes differentially expressed in response to Puccinia melanocephala infection: identification and transcript profiling. Plant Cell Rep, 2012; 31: 955-969. |
[21] |
Peng Q, Su Y C, Ling H, Ahmad W, Gao S W, Guo J L, Que Y X, Xu L P. A sugarcane pathogenesis-related protein, ScPR10, plays a positive role in defense responses under Sporisorium scitamineum, SrMV, SA, and MeJA stresses. Plant Cell Rep, 2017, 36: 1427-1440.
doi: 10.1007/s00299-017-2166-4 |
[22] |
Que Y X, Su Y C, Guo J L, Wu Q B, Xu L P. A global view of transcriptome dynamics during Sporisorium scitamineum challenge in sugarcane by RNA-seq. PLoS One, 2014, 9: e106476.
doi: 10.1371/journal.pone.0106476 |
[23] |
Zhou J R, Sun H D, Ali A, Rott P C, Gao S J. Quantitative proteomic analysis of the sugarcane defense responses incited by Acidovorax avenae subsp. avenae causing red stripe. Ind Crops Prod, 2021, 162: 113275.
doi: 10.1016/j.indcrop.2021.113275 |
[24] |
Chu N, Zhou J R, Fu H Y, Huang M T, Zhang H L, Gao S J. Global gene responses of resistant and susceptible sugarcane cultivars to Acidovorax avenae subsp. avenae identified using comparative transcriptome analysis. Microorganisms, 2020, 8: 10.
doi: 10.3390/microorganisms8010010 |
[25] |
Agarwal P, Agarwal P K. Pathogenesis related-10 proteins are small, structurally similar but with diverse role in stress signaling. Mol Biol Rep, 2014, 41: 599-611.
doi: 10.1007/s11033-013-2897-4 |
[26] |
Chaudhary S, Jabre I, Reddy A S N, Staiger D, Syed N H. Perspective on alternative splicing and proteome complexity in plants. Trends Plant Sci, 2019, 24: 496-506.
doi: S1360-1385(19)30045-7 pmid: 30852095 |
[27] |
Martín G, Márquez Y, Mantica F, Duque P, Irimia M. Alternative splicing landscapes in Arabidopsis thaliana across tissues and stress conditions highlight major functional differences with animals. Genome Biol, 2021, 22: 1-26.
doi: 10.1186/s13059-020-02207-9 |
[28] | 张玉, 王杰, 周世奇, 郑甜甜, 罗成刚, 王元英. 烟草PR10蛋白生物活性及赤星病菌Alternaria alternata诱导下的表达分析. 植物保护学报, 2018, 45: 455-462. |
Zhang Y, Wang J, Zhou S Q, Zheng T T, Luo C G, Wang Y Y. Biological activity of tobacco PR10 protein and expression analysis induced by Alternaria alternata. J Plant Prot, 2018, 45: 455-462 (in Chinese with English abstract) | |
[29] |
Nuruzzaman M, Zhang R, Cao H Z, Luo Z Y. Plant pleiotropic drug resistance transporters: Transport mechanism, gene expression, and function. J Integr Plant Biol, 2014, 56: 729-740.
doi: 10.1111/jipb.12196 |
[30] |
Dahuja A, Kumar R R, Sakhare A, Watts A, Singh B, Goswami S, Sachdev A, Praveen S. Role of ATP-binding cassette transporters in maintaining plant homeostasis under abiotic and biotic stresses. Physiol Planta, 2021, 171: 785-801.
doi: 10.1111/ppl.13302 |
[31] |
贺祯媚, 李东明, 齐艳华. 植物ABCB亚家族生物学功能研究进展. 植物学报, 2019, 54: 688-698.
doi: 10.11983/CBB19140 |
He Z M, Li D M, Qi Y H. Advances in Biofunctions of the ABCB Subfamily in Plants. Chin Bull Bot, 2019, 54: 688-698. (in Chinese with English abstract) | |
[32] |
Shibata Y, Ojika M, Sugiyama A, Yazaki K, Jones D A, Kawakita K, Takemoto D. The full-size ABCG transporters Nb-ABCG1 and Nb-ABCG2 function in pre- and postinvasion defense against Phytophthora infestans in Nicotiana benthamiana. Plant Cell, 2016, 28: 1163-1181.
doi: 10.1105/tpc.15.00721 |
[1] | ZHANG Cheng, ZHANG Zhan, YANG Jia-Bao, MENG Wan-Qiu, ZENG Ling-Lu, SUN Li. Genome-wide identification and relative expression analysis of DGATs gene family in sunflower [J]. Acta Agronomica Sinica, 2023, 49(1): 73-85. |
[2] | WANG Heng-Bo, ZHANG Chang, WU Ming-Xing, LI Xiang, JIANG Zhong-Li, LIN Rong-Xiao, GUO Jin-Long, QUE You-Xiong. Genome-wide identification of NAC transcription factors ATAF subfamily in Sacchrum spontaneum and functional analysis of its homologous gene ScNAC2 in sugarcane cultivar [J]. Acta Agronomica Sinica, 2023, 49(1): 46-61. |
[3] | CAO Ji-Ling, ZENG Qing, ZHU Jian-Guo. Responses of photosynthetic characteristics and gene expression in different wheat cultivars to elevated ozone concentration at grain filling stage [J]. Acta Agronomica Sinica, 2022, 48(9): 2339-2350. |
[4] | ZHU Chun-Quan, WEI Qian-Qian, XIANG Xing-Jia, HU Wen-Jun, XU Qing-Shan, CAO Xiao-Chuang, ZHU Lian-Feng, KONG Ya-Li, LIU Jia, JIN Qian-Yu, ZHANG Jun-Hua. Regulation effects of seedling raising by melatonin and methyl jasmonate substrate on low temperature stress tolerance in rice [J]. Acta Agronomica Sinica, 2022, 48(8): 2016-2027. |
[5] | LI Xu-Juan, LI Chun-Jia, WU Zhuan-Di, TIAN Chun-Yan, HU Xin, QIU Li-Hang, WU Jian-Ming, LIU Xin-Long. Expression characteristic and gene diversity analysis of ScHTD2 in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(7): 1601-1613. |
[6] | LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565. |
[7] | JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623. |
[8] | WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655. |
[9] | CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487. |
[10] | QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319. |
[11] | LIN Huan-Tai, ZHANG Tian-Jie, SHI Meng-Ting, GUO Yan-Fang, GAO San-Ji, WANG Jin-Da. Genome-wide analysis of terpene synthase (TPS) gene family and its expression under biological stress in Saccharum spontaneum [J]. Acta Agronomica Sinica, 2022, 48(12): 3029-3044. |
[12] | MA Wen-Jing, LIU Zhen, LI Zhi-Tao, ZHU Jin-Yong, LI Hong-Yang, CHEN Li-Min, SHI Tian-Bin, ZHANG Jun-Lian, LIU Yu-Hui. Genome-wide identification and expression analysis of BBX gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2022, 48(11): 2797-2812. |
[13] | ZHENG Yun-Pu, CHANG Zhi-Jie, HAN Yi, LU Yun-Ze, CHEN Wen-Na, TIAN Yin-Shuai, YIN Jia-Wei, HAO Li-Hua. Effects of soil water deficit and elevated atmospheric CO2 concentration on leaf photosynthesis of winter wheat [J]. Acta Agronomica Sinica, 2022, 48(11): 2920-2933. |
[14] | JIA Xiao-Xia, QI En-Fang, MA Sheng, HUANG Wei, ZHENG Yong-Wei, BAI Yong-Jie, WEN Guo-Hong. Genome-wide identification and expression analysis of potato PYL gene family [J]. Acta Agronomica Sinica, 2022, 48(10): 2533-2545. |
[15] | WANG Yan-Peng, LING Lei, ZHANG Wen-Rui, WANG Dan, GUO Chang-Hong. Genome-wide identification and expression analysis of B-box gene family in wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1437-1449. |
|