Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (5): 1184-1196.doi: 10.3724/SP.J.1006.2023.21006
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
LIU Jia(), GONG Fang-Yi, LIU Ya-Xi, YAN Ze-Hong, ZHONG Xiao-Ying, CHEN Hou-Lin, HUANG Lin(), and WU Bi-Hua()
[1] | 赵广才, 常旭虹, 王德梅, 陶志强, 王艳杰, 杨玉双, 朱英杰. 小麦生产概况及其发展. 作物杂志, 2018, 34(4): 1-7. |
Zhao G C, Chang X H, Wang D M, Tao Z Q, Wang Y J, Yang Y S, Zhu Y J. General situation and development of wheat production. Crops, 2018, 34(4): 1-7. (in Chinese with English abstract) | |
[2] |
International Wheat Genome Sequencing Consortium. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science, 2014, 345: 1251788.
doi: 10.1126/science.1251788 |
[3] |
Jones J M, Pena R J, Korczak R, Braun H J. Carbohydrates, grains, and wheat in nutrition and health: an overview Part II. Grain terminology and nutritional contributions.Cereal Foods World, 2015, 60: 260-271.
doi: 10.1094/CFW-60-6-0260 |
[4] |
Joppa L R, Cantrell R G. Chromosomal location of genes for grain protein content of wild tetraploid wheat. Crop Sci, 1990, 30: 1059-1064.
doi: 10.2135/cropsci1990.0011183X003000050021x |
[5] | Jaradat A A. Ecogeography, genetic diversity, and breeding value of wild emmer wheat (‘Triticum dicoccoides’ korn ex Asch. and Graebn.) Thell. Aust J Crop Sci, 2011, 5: 1072. |
[6] |
Van Silfhout C H, Gerechter-Amitai Z K. Adult-plant resistance to yellow rust in wild emmer wheat. Netherlands J Plant Pathol, 1988, 94: 267-272.
doi: 10.1007/BF01977317 |
[7] |
Nevo E. Genetic resources of wild emmer, Triticum dicoccoides, for wheat improvement in the third millennium. Isr J Plant Sci, 2001, 49: 77-92.
doi: 10.1092/XJQN-9T4H-VTL3-CDXU |
[8] |
Haudry A, Cenci A, Ravel C, Bataillon T, Brunel D, Poncet C, Hochu I, Poirier S, Santoni S, Glémin S, David J. Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol Biol Evol, 2007, 24: 1506-1517.
doi: 10.1093/molbev/msm077 pmid: 17443011 |
[9] |
Kushnir U, Halloran G M. Transfer of high kernel weight and high protein from wild tetraploid wheat (Triticum turgidum dicoccoides) to bread wheat (T. aestivum) using homologous and homoeologous recombination. Euphytica, 1984, 33: 249-255.
doi: 10.1007/BF00022773 |
[10] | 储诚艮, 冯祎高, 陈佩度. 将野生二粒小麦的大粒和籽粒高蛋白含量性状向普通小麦的转移. 南京农业大学学报, 2001, 24(2): 16-19. |
Chu C G, Feng Y G, Chen P D. The transference of the traits large kernel and high seed protein content from T. dicoccoides into common wheat. J Nanjing Agric Univ, 2001, 24: 16-19. (in Chinese with English abstract) | |
[11] | 胡喜贵. 关切小麦加工和营养品质的1Ay和NAM位点的种质资源鉴定及利用研究. 四川农业大学博士学位论文, 四川成都, 2013. |
Hu X G. Characterization and Utilization of 1Ay and NAM Loci Associated with Wheat Processing and Nutritional Quality in Triticum and Its Related Species. PhD Dissertation of Sichuan Agricultural University, Chengdu, Sichuan, China, 2013. (in Chinese with English abstract) | |
[12] |
Jiang Z L, Wu B H, Wang Z Z, Hu J L, Yuan J, Chen H L, Liu J, Zheng Y L, Liu D C. Enriching novel Glu-Ax alleles and significantly strengthening gluten properties of common wheat through wide hybridization with wild emmer. J Cereal Sci, 2017, 76: 271-279.
doi: 10.1016/j.jcs.2017.04.018 |
[13] |
Wang Z Z, Huang L, Wu B H, Hu J L, Jiang Z L, Qi P F, Zheng Y L, Liu D C. Characterization of an integrated active Glu-1Ay allele in common wheat from wild emmer and its potential role in flour improvement. Int J Mol Sci, 2018, 19: 923.
doi: 10.3390/ijms19040923 |
[14] |
Liu J, Huang L, Wang C Q, Liu Y X, Yan Z H, Wang Z Z, Xiang L, Zhong X Y, Gong F Y, Zheng Y L, Liu D C, Wu B H. Genome-wide association study reveals novel genomic regions associated with high grain protein content in wheat lines derived from wild emmer wheat. Front Plant Sci, 2019, 10: 464-464.
doi: 10.3389/fpls.2019.00464 pmid: 31057576 |
[15] |
Gong F Y, Qi T G, Zhang T, Lu Y S, Liu J, Zhong X Y, He J S, Li Y F, Zheng Y L, Liu D C, Huang L, Wu B H. Comparison of the agronomic, cytological, grain protein characteristics, as well as transcriptomic profile of two wheat lines derived from wild emmer. Front Genet, 2022, 12: 804481.
doi: 10.3389/fgene.2021.804481 |
[16] |
Gong F Y, Huang L, Qi T G, Tang G, Liu J, Xiang L, He J S, Zheng Y L, Liu D C, Wu B H. Comparative analysis of developing grain transcriptome reveals candidate genes and pathways improving GPC in wheat lines derived from wild emmer. J Appl Genet, 2021, 62: 17-25.
doi: 10.1007/s13353-020-00588-y pmid: 33063291 |
[17] | 伍碧华, 路洁霏, 李平, 胡喜贵, 郑有良. 野生二粒小麦籽粒蛋白质含量和库容性状的遗传多样性与可利用性研究. 四川农业大学学报, 2008, 26: 221-225. |
Wu B H, Lu J F, Li P, Hu X G, Zheng Y L. Genetic diversity and potential utilization of grain protein content and sink traits in Triticum dicoccoides. J Sichuan Agric Univ, 2008, 26: 221-225. (in Chinese with English abstract) | |
[18] | 国家粮食局. 谷物与豆类千粒重的测定, GB T 5519-2008, 2008. |
State Administration of Grain. Cereals and Pulses-Determination of the Mass of 1000-grain, GB T 5519-2008, 2008 (in Chinese) | |
[19] |
Liu Y X, Lin Y, Gao S, Li Z Y, Ma J, Deng M, Chen G Y, Wei Y M, Zheng Y L. A genome-wide association study of 23 agronomic traits in Chinese wheat landraces. Plant J, 2017, 91: 861-873.
doi: 10.1111/tpj.2017.91.issue-5 |
[20] |
Pritchard J K, Stephens M, Rosenberg N A, Donnelly P. Association mapping in structured populations. Am J Hum Genet, 2000, 67: 170-181.
doi: 10.1086/302959 pmid: 10827107 |
[21] |
Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
doi: 10.1093/bioinformatics/btm308 pmid: 17586829 |
[22] | Alvarado G, López M, Vargas M, Pacheco Á, Rodríguez F, Burgueño J, Crossa J. META-R (Multi Environment Trail Analysis with R for Windows) Version 6.04. Mexico, International Maize and Wheat Improvement Center, 2015 [2022-02-17]. https://data.cimmyt.org/dataset.xhtml?persistentId=hdl:11529/10201. |
[23] |
Alomari D Z, Eggert K, Von Wirén N, Alqudah A M, Polley A, Plieske J, Ganal M W, Pillen K, Röder M S. Identifying candidate genes for enhancing grain Zn concentration in wheat. Front Plant Sci, 2018, 9: 1313.
doi: 10.3389/fpls.2018.01313 pmid: 30271416 |
[24] |
Barrett J C, Fry B, Maller J, Daly M J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 2004, 21: 263-265.
doi: 10.1093/bioinformatics/bth457 |
[25] | 段国辉, 高海涛, 张学品, 吴少辉, 杨洪强, 王艳芳. 冬小麦水旱条件下株高构成与产量性状及抗旱指数相关分析. 陕西农业科学, 2006, (4): 1-3. |
Duan G H, Gao H T, Zhang X P, Wu S H, Yang H Q, Wang Y F. Correlation analysis of plant height composition, yield characters and drought resistance index of winter wheat under flood and drought conditions. Shaanxi J Agric Sci, 2006, (4): 1-3. (in Chinese) | |
[26] | 贾继增. 小麦粒重与植株性状相关因素的统计分析. 作物学报, 1984, 10: 201-205. |
Jia J Z. The statistical analysis for correlation factors in kernel weight and plant characters in wheat (T. aestivum L.). Acta Agron Sin, 1984, 10: 201-205. (in Chinese with English abstract) | |
[27] |
Austin R B, Bingham J, Blackwell R D, Evans L T, Ford M A, Morgan C L, Taylor M. Genetic improvements in winter wheat yields since 1900 and associated physiological changes. J Agric Sci, 1980, 94: 675-689.
doi: 10.1017/S0021859600028665 |
[28] | 高士杰. 作物株型改良的增产效用. 吉林农业科学, 1999, 24(2): 23-24. |
Gao S J. Yield-increasing effect of crop plant type improvement. J Jilin Agric Sci, 1999, 24(2): 23-24. (in Chinese) | |
[29] | 盛承师. 小麦冠层形态结构与籽粒产量的关系(三): 理想株型的设计. 国外农学: 麦类作物, 1987, (1): 35-38. |
Sheng C S. Relationship between wheat canopy morphology and grain yield: 3. Design for ideal plant type. Agron Abroad: Wheat Barley Triticale etc., 1987, (1): 35-38. (in Chinese) | |
[30] | 张智猛. 华北地区小麦生育进程、灌浆特性与库容对粒重相对重要性的研究. 河北农业大学学报, 1998, (2): 22-27. |
Zhang Z M. Studies on the contribution of growing process, filling properties, storage capacity to grain weight for wheat in North China. J Agric Univ Hebei, 1998, (2): 22-27. (in Chinese with English abstract) | |
[31] | 李俊周, 刘艳阳, 何宁, 崔党群. 小麦DH群体数量性状的遗传分析. 麦类作物学报, 2005, 25(3): 16-19. |
Li J Z, Liu Y Y, He N, Cui D Q. Genetics analysis of several quantitative traits of doubled haploid population in wheat. J Triticeae Crops, 2005, 25(3): 16-19. (in Chinese with English abstract) | |
[32] | 李战怡. 西南小麦地方品种农艺性状评价及关联分析. 四川农业大学硕士学位论文, 四川成都, 2015. |
Li Z Y. Agronomic Traits Evaluation and Association Analysis of Wheat Landraces in Southwest China. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2015. (in Chinese with English abstract) | |
[33] |
Sourdille P, Snape J W, Cadalen T, Charmet G, Nakata N, Bernard S, Bernard M. Detection of QTLs for heading time and photoperiod response in wheat using a doubled-haploid population. Genome, 2000, 43: 487-494.
pmid: 10902713 |
[34] |
Huang X Q, Cloutier S, Lycar L, Radovanovic N, Humphreys D G, Noll J S, Somers D J, Brown P D. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet, 2006, 113: 753-766.
doi: 10.1007/s00122-006-0346-7 pmid: 16838135 |
[35] |
Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder M, Weber W. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet, 2002, 105: 921-936.
doi: 10.1007/s00122-002-0994-1 pmid: 12582918 |
[36] |
Campbell K G, Bergman C J, Gualberto D G, Anderson J A, Giroux M J, Hareland G, Fulcher R G, Sorrells M E, Finney P L. Quantitative trait loci associated with kernel traits in a soft × hard wheat cross. Crop Sci, 1999, 39: 1184-1195.
doi: 10.2135/cropsci1999.0011183X003900040039x |
[37] |
Ammiraju J S S, Dholakia B B, Santra D K, Singh H, Lagu M D, Tamhankar S A, Dhaliwal H S, Rao V S, Gupta V S, Ranjekar P K. Identification of inter simple sequence repeat (ISSR) markers associated with seed size in wheat. Theor Appl Genet, 2001, 102: 726-732.
doi: 10.1007/s001220051703 |
[38] | 郑有良, 颜济杨俊良. 小麦粒重基因定位研究. 作物学报, 1993, 19: 304-308. |
Zheng Y L, Yan J, Yang J L. Localization of genes for grain weight in common wheat. Acta Agron Sin, 1993, 19: 304-308. (in Chinese) | |
[39] | 刘振华, 于延冲, 向凤宁. 生长素响应因子与植物的生长发育. 遗传, 2011, 33: 1335-1346. |
Liu Z H, Yu Y C, Xiang F N. Auxin response factors and plant growth and development. Hereditas (Beijing), 2011, 33: 1335-1346. (in Chinese with English abstract) | |
[40] | 李春喜, 赵广才. 小麦分蘖变化动态与内源激素关系的研究. 作物学报, 2000, 26: 963-968. |
Li C X, Zhao G C. Research on the relationship between wheat tillering dynamics and endogenous hormone. Acta Agron Sin, 2000, 26: 963-968. (in Chinese with English abstract) | |
[41] | 黄祥富, 黄上志, 傅家瑞. 植物热激蛋白的功能及其基因表达的调控. 植物学报, 1999, 16: 530-536. |
Huang X F, Huang S Z, Fu J R. Regulation of expression and functions of the heat shock proteins of plant. Chin Bull Bot, 1999, 16: 530-536. (in Chinese with English abstract) | |
[42] |
许克恒, 张云彤, 张莹, 王彬, 王法微, 李海燕. 植物F-box基因家族的研究进展. 生物技术通报, 2018, 34(1): 26-32.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0636 |
Xu K H, Zhang Y T, Zhang Y, Wang B, Wang F W, Li H Y. Research advances on the f-box gene family in plants. Biotechnol Bull, 2018, 34(1): 26-32. (in Chinese with English abstract) | |
[43] | 李元元, 王鲁, 苏振刚, 王元英. MADS-box基因控制植物成花的分子机理. 基因组学与应用生物学, 2010, 29: 1122-1132. |
Li Y Y, Wang L, Su Z G, Wang Y Y. The molecular mechanism of MADS-box genes regulates floral formation and flowering in plant. Genom Appl Biol, 2010, 29: 1122-1132. (in Chinese with English abstract) | |
[44] |
Qi P, Lin Y S, Song X J, Shen J B, Huang W, Shan J X, Zhu M Z, Jiang L, Gao J P, Lin H X. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Res, 2012, 22: 1666.
doi: 10.1038/cr.2012.151 |
[1] | YIN Fang-Bing, LI Ya-Nan, BAO Jian-Xi, MA Ya-Jie, QIN Wen-Xuan, WANG Rui-Pu, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association study and candidate genes predication of yield related ear traits in maize [J]. Acta Agronomica Sinica, 2023, 49(2): 377-391. |
[2] | KE Hui-Feng, ZHANG Zhen, GU Qi-Shen, ZHAO Yan, LI Pei-Yu, ZHANG Dong-Mei, CUI Yan-Ru, WANG Xing-Fen, WU Li-Qiang, ZHANG Gui-Yin, MA Zhi-Ying, SUN Zheng-Wen. Genome-wide association study of root biomass related traits at seeding stage under low phosphorus stress in cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2168-2179. |
[3] | ZHANG Chao, YANG Bo, ZHANG Li-Yuan, XIAO Zhong-Chun, LIU Jing-Sen, MA Jin-Qi, LU Kun, LI Jia-Na. Mining harvest index loci based on QTL mapping and genome-wide association study in rapessed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2180-2195. |
[4] | YANG Fei, ZHANG Zheng-Feng, NAN Bo, XIAO Ben-Ze. Genome-wide association analysis and candidate gene selection of yield related traits in rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1813-1821. |
[5] | CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345. |
[6] | SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090. |
[7] | LI Xiao-Yu, FANG Xiao-Mei, WU Hao-Tian, WANG Ying-Qian, LIU Yang, TANG Tian, WANG Yu-Dong, WU Yin-Huan, YUE Lin-Qing, ZHANG Rui-Feng, CUI Jing-Bin, ZHANG Jian, YI Ze-Lin. Association analysis of agronomic traits of tartary buckwheat germplasm resources with SSR markers [J]. Acta Agronomica Sinica, 2022, 48(12): 3091-3107. |
[8] | LI Jian-Ling, GONG Dan, WANG Su-Hua, CHEN Hong-Lin, CHENG Xu-Zhen, XIONG Tao, WANG Li-Xia. Construction of SNP high-density genetic map and QTL analysis of agronomic traits in cowpea (Vigna unguiculata (L.) Walp.) [J]. Acta Agronomica Sinica, 2022, 48(10): 2475-2482. |
[9] | ZHAO Hai-Han, LIAN Wang-Min, ZHAN Xiao-Deng, XU Hai-Ming, ZHANG Ying-Xin, CHENG Shi-Hua, LOU Xiang-Yang, CAO Li-Yong, HONG Yong-Bo. Genetic dissection of the bacterial blight disease resistance in super hybrid rice RILs using genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(1): 121-137. |
[10] | ZHAO Jing, MENG Fan-Gang, YU De-Bin, QIU Qiang, ZHANG Ming-Hao, RAO De-Min, CONG Bo-Tao, ZHANG Wei, YAN Xiao-Yan. Response of agronomic traits and P/Fe utilization efficiency to P application with different P efficiency in soybean [J]. Acta Agronomica Sinica, 2021, 47(9): 1824-1833. |
[11] | WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510. |
[12] | MA Juan, CAO Yan-Yong, LI Hui-Yong. Genome-wide association study of ear cob diameter in maize [J]. Acta Agronomica Sinica, 2021, 47(7): 1228-1238. |
[13] | GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214. |
[14] | CHEN Can, NONG Bao-Xuan, XIA Xiu-Zhong, ZHANG Zong-Qiong, ZENG Yu, FENG Rui, GUO Hui, DENG Guo-Fu, LI Dan-Ting, YANG Xing-Hai. Genome-wide association study of blast resistance loci in the core germplasm of rice landraces from Guangxi [J]. Acta Agronomica Sinica, 2021, 47(6): 1114-1123. |
[15] | ZHANG Chun, ZHAO Xiao-Zhen, PANG Cheng-Ke, PENG Men-Lu, WANG Xiao-Dong, CHEN Feng, ZHANG Wei, CHEN Song, PENG Qi, YI Bin, SUN Cheng-Ming, ZHANG Jie-Fu, FU Ting-Dong. Genome-wide association study of 1000-seed weight in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 650-659. |
|