Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (5): 1211-1221.doi: 10.3724/SP.J.1006.2023.24079

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Functional analysis of Bna-miR43-FBXL regulatory module involved in aluminum stress in Brassica napus

ZHANG Ying-Chuan1(), WU Xiao-Ming-Yu1, TAO Bao-Long1, CHEN Li1,2, LU Hai-Qin1, ZHAO Lun1, WEN Jing1, YI Bin1, TU Jing-Xing1, FU Ting-Dong1, SHEN Jin-Xiong1,*()   

  1. 1National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, Hubei, China,
    2School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, China
  • Received:2022-04-02 Accepted:2022-07-21 Online:2023-05-12 Published:2022-08-19
  • Contact: *E-mail: jxshen@mail.hzau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31871654)

Abstract:

Aluminum is one of the main factors that limited crop growth and yield in acid soil and how to utilize acid soil is of great significance. This study is based on Bna-miR43, an unreported miRNA identified in the previous study. We analyzed the molecular characteristics, conserved structure, phylogenetic analysis, and the expression level of Bna-miR43 and its target genes in Brassica napus. The Bna-miR43 over expression vector was constructed to explore the molecular mechanism of Bna-miR43- FBXL module in Brassica napus in aluminum stress. 5'-RACE showed that Bna-miR43 actually cleaved BnaA09g03940D and BnaCnng24950D. Bioinformatics analysis revealed that the homologous gene of BnaA09g03940D and BnaCnng24950D in Arabidopsis was AT5G27950, encoding E3 ubiquitin ligase contained F-box. The qRT-PCR indicated that the relative expression levels of Bna-miR43 and its target genes had a phenomenon of trade-off in different tissues of Brassica napus and under transient treatment of aluminum stress. Aluminum treatment showed that the entire aerial part of the transgenic plant grew much better than control and accumulated less MDA and H2O2. Meanwhile, the aluminum accumulation in the root of transgenic plants was less than the control. In this study, these results may provide reference for the response of aluminum stress in Brassica napus.

Key words: Brassica napus L., Bna-miR43, F-box, aluminum stress

Table S1

Bna-miR43 precursor sequence and mature sequence"

Bna-miR43 序列 Sequence (5°-3°)
前体序列
Precursor sequence
AGTTTAGGTCGAAGATTGGAACATTGGGACCGTGCCCTATTACAAACTTACACACATTGCAAGCATATTTCTATGCTCATACATATGATCAATATAGCCTTCTATCTTAAGTCAAGTATTGTATAATTTAATTTTGTTATACACTAATTTAGATCATGAAGAGTCTGGATTTTTAGTTTTTTTTTCTACAAT
成熟体序列
Mature sequence
GAAGATTGGAACATTGGGACC

Fig. 1

Bna-miR43 precursor’s secondary structure Arrow indicates Bna-miR43 mature sequence."

Table 1

Overview of Bna-miR43 target genes predicted from degradome sequencing"

靶基因
Target gene
拟南芥同源基因
Arabidopsis homologous gene
靶基因功能
Function of target genes
类别
Category
BnaA09g03940D AT5G27920 F-box蛋白家族 F-box family protein 0
BnaCnng24950D AT5G27920 F-box蛋白家族 F-box family protein 0
BnaA06g06260D AT5G27920 F-box蛋白家族 F-box family protein 0
BnaC05g08010D AT5G27920 F-box蛋白家族 F-box family protein 0

Fig. 2

RLM-RACE verify the cleavage site in target genes The arrow indicates the cleavage site in the target genes, the number represents the frequency of clones to validate the cleavage sites of target mRNA."

Fig. 3

Alignment of B. napus target genes and Arabidopsis homologous gene"

Fig. 4

Evolutionary of FBXL gene family in B. napus A: phylogenetic tree of FBXL gene family in B. napus; B: the gene structure and motif of F-box family."

Fig. 5

FBXL subfamily sequence identity"

Fig. 6

Relative expression profile of Bna-miR43 and its target genes in different tissues of B. napus Three biological replicates and three technical replicates per experiment. *: P < 0.05; **: P < 0.01."

Fig. 7

Relative expression level of Bna-miR43 and its target genes A: the expression level of Bna-miR43 and its target genes of B. napus under Al stress; B: gene expression of over expression Bna-miR43 transgenic rapeseed. Three biological replicates and three technical replicates per experiment, *: P < 0.05; **: P < 0.01."

Fig. 8

Phenotype identification of J572 and transgenic rapeseed in aluminum stress A: the untreated rapeseed material. B: rapeseed material treated with Al. The bottom leaves of the same strain were randomly taken for pictures, and each strain choose five rapeseed, in the pictures of above ground portion, bar: 5 cm; the bottom leaf, bar: 2 cm. C: the distribution of aluminum in root by hematoxylin dyeing, -Al3+: J572 was cultured in 0.5mmol L-1 CaCl2 (pH 4.5) for one week, then stained with hematoxylin, observed with stereo microscope and photographed. +Al3+: transgenic rapeseed and J572 were treated in 0.5 mmol L-1 CaCl2, 300 μmol L-1 AlCl3 (pH 4.5) for one week, then stained with hematoxylin, observed and photographed by stereo microscope, on the left side of the figure, bar: 1 mm, on the right side of the figure, bar: 0.5 mm."

Fig. 9

Physiological and biochemical indexes of over expression Bna-miR43 under aluminum stress A: MDA content in roots of Bna-miR43-overexpressed transgenic rapeseed after Al stress; B: hydrogen peroxide content in roots of Bna-miR43-overexpressed transgenic rapeseed after Al stress. Three biological replicates and three technical replicates per experiment, *: P < 0.05; **: P < 0.01."

Fig. 10

Pathway of Bna-miR43"

[1] Sade H, Meriga B, Surapu V, Gadi J, Sunita M S L, Suravajhala P, Kishor P B K. Toxicity and tolerance of aluminum in plants: tailoring plants to suit to acid soils. BioMetals, 2016, 29: 187-210.
doi: 10.1007/s10534-016-9910-z pmid: 26796895
[2] 肖厚军, 王正银. 酸性土壤铝毒与植物营养研究进展. 西南农业学报, 2006, 19: 1180-1188.
Xiao H J, Wang Z Y. Advance on study of aluminum toxicity and plant nutrition in acid soils. Southwest China J Agric Sci, 2006, 19: 1180-1188. (in Chinese with English abstract)
[3] Panda S K, Baluška F, Matsumoto H. Aluminum stress signaling in plants. Plant Signal Behav, 2009, 4: 592-597.
doi: 8903 pmid: 19820334
[4] Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn S J, Ryan P R, Delhaize E, Matsumoto H. A wheat gene encoding an aluminum-activated malate transporter. Plant J, 2004, 37: 645-653.
doi: 10.1111/j.1365-313x.2003.01991.x pmid: 14871306
[5] Krill A M, Kirst M, Kochian L V, Buckler E S, Hoekenga O A. Association and linkage analysis of aluminum tolerance genes in maize. PLoS One, 2010, 5: e9958.
doi: 10.1371/journal.pone.0009958
[6] Sharma T, Dreyer I, Kochian L, Piñeros M A. The ALMT family of organic acid transporters in plants and their involvement in detoxification and nutrient security. Front Plant Sci, 2016, 7: 1488.
pmid: 27757118
[7] Bojórquez-Quintal E, Escalante-Magaña C, Echevarría-Machado I, Martínez-Estévez M. Aluminum, a friend or foe of higher plants in acid soils. Front Plant Sci, 2017, 8: 1767.
doi: 10.3389/fpls.2017.01767 pmid: 29075280
[8] Inostroza-Blancheteau C, Rengel Z, Alberdi M, Mora M L, Aquea F, Arce-Johnson P, Reyes-Díaz M. Molecular and physiological strategies to increase aluminum resistance in plants. Mol Biol Rep, 2012, 39: 2069-2079.
doi: 10.1007/s11033-011-0954-4 pmid: 21660471
[9] Li J Y, Liu J, Dong D, Jia X, McCouch S R, Kochian L V. Natural variation underlies alterations in Nramp aluminum transporter (NRAT1) expression and function that play a key role in rice aluminum tolerance. Proc Natl Acad Sci USA, 2014, 111: 6503-6508.
doi: 10.1073/pnas.1318975111
[10] Wu Y, Yang Z, How J, Xu H, Chen L, Li K. Overexpression of a peroxidase gene (AtPrx64) of Arabidopsis thaliana in tobacco improves plant’s tolerance to aluminum stress. Plant Mol Biol, 2017, 95: 157-168.
doi: 10.1007/s11103-017-0644-2
[11] Iuchi S, Koyama H, Iuchi A, Kobayashi Y, Kitabayashi S, Kobayashi Y, Ikka T, Hirayama T, Shinozaki K, Kobayashi M. Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proc Natl Acad Sci USA, 2007, 104: 9900-9905.
doi: 10.1073/pnas.0700117104
[12] Sawaki Y, Iuchi S, Kobayashi Y, Ikka T, Sakurai N, Fujita M, Shinozaki K, Shibata D, Kobayashi M, Koyama H. STOP 1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities. Plant Physiol, 2009, 150: 281-294.
doi: 10.1104/pp.108.134700
[13] 鲁海琴, 陈丽, 陈磊, 张盈川, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-Bna-miR311-HSC70-1模块调控甘蓝型油菜响应热胁迫的机制. 作物学报, 2020, 46: 1474-1484.
doi: 10.3724/SP.J.1006.2020.04014
Lu H Q, Chen L, Chen L, Zhang Y C, Wen J, Yi B, Tu J X, Fu T D, Shen J X. Mechanism research of Bna-Bna-miR311-HSC70-1 module regulating heat stress response in Brassica napus L. Acta Agron Sin, 2020, 46: 1474-1484 (in Chinese with English abstract).
[14] Lima J C, Arenhart R A, Margis-Pinheiro M, Margis R. Aluminum triggers broad changes in microRNA expression in rice roots. Genet Mol Res, 2011, 10: 2817-2832.
doi: 10.4238/2011.November.10.4 pmid: 22095606
[15] Zeng Q Y, Yang C Y, Ma Q B, Li X P, Dong W W, Nian H. Identification of wild soybean miRNAs and their target genes responsive to aluminum stress. BMC Plant Biol, 2012, 12: 182.
doi: 10.1186/1471-2229-12-182
[16] He H, He L, Gu M. Role of microRNAs in aluminum stress in plants. Plant Cell Rep, 2014, 33: 831-836.
doi: 10.1007/s00299-014-1565-z pmid: 24413694
[17] 陈丽. 甘蓝型油菜株型及角果长度相关miRNA和靶基因的挖掘. 华中农业大学博士学位论文, 湖北武汉, 2018.
Chen L. The Study of miRNA and Targets Regulate Plant Architecture and Silique Length in Brassica napus L. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2018. (in Chinese with English abstract)
[18] Varkonyi-Gasic E, Wu R, Wood M, Walton E F, Hellens R P. Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods, 2007, 3: 12.
pmid: 17931426
[19] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[20] 金建峰. 番茄两个NAC转录因子响应铝胁迫的功能研究. 浙江大学博士学位论文, 浙江杭州, 2021.
Jin J F. The Study on the Roles of Two NAC Transcription Factors in Response to Aluminum Stress in Tomato. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2021. (in Chinese with English abstract)
[21] Xu K, Wu N, Yao W, Li X, Zhou Y, Li H. The biological function and roles in phytohormone signaling of the F-Box protein in plants. Agronomy, 2021, 11: 2360.
doi: 10.3390/agronomy11112360
[22] Hong M J, Kim J B, Seo Y W, Kim D Y. Regulation of glycosylphosphatidylinositol-anchored protein (GPI-AP) expression by F-Box/LRR-Repeat (FBXL) protein in wheat (Triticum aestivum L.). Plants, 2021, 10: 1606.
doi: 10.3390/plants10081606
[23] Yu Y, Wang P, Bai Y, Wang Y, Liu C, Ni Z. The soybean F-box protein GmFBX176 regulates ABA-mediated responses to drought and salt stress. Environ Exp Bot, 2020, 176: 104056.
doi: 10.1016/j.envexpbot.2020.104056
[24] Zhang Y, Zhang J, Guo J, Zhou F, Singh S, Xu X, Xie Q, Yang Z, Huang C F. F-box protein RAE1 regulates the stability of the aluminum-resistance transcription factor STOP1 in Arabidopsis. Proc Natl Acad Sci USA, 2019, 116: 319-327.
doi: 10.1073/pnas.1814426116 pmid: 30559192
[25] Sawaki Y, Iuchi S, Kobayashi Y, Ikka T, Sakurai N, Fujita M, Shinozaki K, Shibata D, Kobayashi M, Koyama H. STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities. Plant Physiol, 2009, 150: 281-294.
doi: 10.1104/pp.108.134700
[26] Shetty R, Vidya C S N, Prakash N B, Lux A, Vaculik M. Aluminum toxicity in plants and its possible mitigation in acid soils by biochar: a review. Sci Total Environ, 2021, 765: 142744.
doi: 10.1016/j.scitotenv.2020.142744
[27] Bose J, Babourina O, Rengel Z. Role of magnesium in alleviation of aluminium toxicity in plants. J Exp Bot, 2011, 62: 2251-2264.
doi: 10.1093/jxb/erq456 pmid: 21273333
[28] Ohyama Y, Ito H, Kobayashi Y, Ikka T, Morita A, Kobayashi M, Imaizumi R, Aoki T, Komatsu K, Sakata Y, Iuchi S, Koyama H. Characterization of AtSTOP1orthologous genes in tobacco and other plant species. Plant Physiol, 2013, 162: 1937-1946.
doi: 10.1104/pp.113.218958
[29] Sagi M, Fluhr R. Superoxide production by plant homologues of the gp91phox NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol, 2001, 126: 1281-1290.
doi: 10.1104/pp.126.3.1281 pmid: 11457979
[30] Daspute A A, Sadhukhan A, Tokizawa M, Kobayashi Y, Panda S K, Koyama H. Transcriptional regulation of aluminum- tolerance genes in higher plants: clarifying the underlying molecular mechanisms. Front Plant Sci, 2017, 8: 1358.
doi: 10.3389/fpls.2017.01358
[1] ZHANG Wen-Xuan, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome editing of BnaMPK6 gene by CRISPR/Cas9 for loss of salt tolerance in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(2): 321-331.
[2] MA Li, BAI Jing, ZHAO Yu-Hong, SUN Bo-Lin, HOU Xian-Fei, FANG Yan, WANG Wang-Tian, PU Yuan-Yuan, LIU Li-Jun, XU Jia, TAO Xiao-Lei, SUN Wan-Cang, WU Jun-Yan. Protein and physiological differences under cold stress, and identification and analysis of BnGSTs in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(1): 153-166.
[3] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[4] WU Jia-Yi, YUAN Fang, MENG Li-Jiao, LI Chen-Yang, SHI Hong-Song, BAI Yan-Song, WU Xiao-Ru, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. QTL mapping and candidate genes screening of photosynthesis-related traits in Brassica napus L. during seedling stage under aluminum stress [J]. Acta Agronomica Sinica, 2022, 48(11): 2749-2764.
[5] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[6] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[7] MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471.
[8] WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422.
[9] GUO Qing-Qing, ZHOU Rong, CHEN Xue, CHEN Lei, LI Jia-Na, WANG Rui. Location and InDel markers for candidate interval of the orange petal gene in Brassica napus L. by next generation sequencing [J]. Acta Agronomica Sinica, 2021, 47(11): 2163-2172.
[10] LEI Wei, WANG Rui-Li, WANG Liu-Yan, YUAN Fang, MENG Li-Jiao, XING Ming-Li, XU Lu, TANG Zhang-Lin, LI Jia-Na, CUI Cui, ZHOU Qing-Yuan. Genome-wide association study of seed density and its related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(11): 2099-2110.
[11] WANG Rui-Li,WANG Liu-Yan,YE Sang,Gao Huan-Huan,LEI Wei,WU Jia-Yi,YUAN Fang,MENG Li-Jiao,TANG Zhang-Lin,LI Jia-Na,ZHOU Qing-Yuan,CUI Cui. QTL mapping of seed germination-related traits in Brassica napus L. under aluminum toxicity stress [J]. Acta Agronomica Sinica, 2020, 46(6): 832-843.
[12] LYU Wei-Sheng, XIAO Fu-Liang, ZHANG Shao-Wen, ZHENG Wei, HUANG Tian-Bao, XIAO Xiao-Jun, LI Ya-Zhen, WU Yan, HAN De-Peng, XIAO Guo-Bin, ZHANG Xue-Kun. Effects of sowing and fertilizing methods on yield and fertilizer use efficiency in red-soil dryland rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1790-1800.
[13] HU Mao-Long, CHENG Li, GUO Yue, LONG Wei-Hua, GAO Jian-Qin, PU Hui-Ming, ZHANG Jie-Fu, CHEN Song. Development and application of the marker for imidazolinone-resistant gene in Brassica napus [J]. Acta Agronomica Sinica, 2020, 46(10): 1639-1646.
[14] Cun-Min QU,Guo-Qiang MA,Mei-Chen ZHU,Xiao-Hu HUANG,Le-Dong JIA,Shu-Xian WANG,Hui-Yan ZHAO,Xin-Fu XU,Kun LU,Jia-Na LI,Rui WANG. Genome-wide association of roots, hypocotyls and fresh weight at germination stage under as stress in Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(2): 175-187.
[15] Yang-Yang LI,Rong-Rong JING,Rong-Rong LYU,Peng-Cheng SHI,Xin LI,Qin WANG,Dan WU,Qing-Yuan ZHOU,Jia-Na LI,Zhang-Lin TANG. Genome-wide association analysis and candidate genes prediction of waterlogging-responding traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(12): 1806-1821.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .