Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (5): 1211-1221.doi: 10.3724/SP.J.1006.2023.24079
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ZHANG Ying-Chuan1(), WU Xiao-Ming-Yu1, TAO Bao-Long1, CHEN Li1,2, LU Hai-Qin1, ZHAO Lun1, WEN Jing1, YI Bin1, TU Jing-Xing1, FU Ting-Dong1, SHEN Jin-Xiong1,*()
[1] |
Sade H, Meriga B, Surapu V, Gadi J, Sunita M S L, Suravajhala P, Kishor P B K. Toxicity and tolerance of aluminum in plants: tailoring plants to suit to acid soils. BioMetals, 2016, 29: 187-210.
doi: 10.1007/s10534-016-9910-z pmid: 26796895 |
[2] | 肖厚军, 王正银. 酸性土壤铝毒与植物营养研究进展. 西南农业学报, 2006, 19: 1180-1188. |
Xiao H J, Wang Z Y. Advance on study of aluminum toxicity and plant nutrition in acid soils. Southwest China J Agric Sci, 2006, 19: 1180-1188. (in Chinese with English abstract) | |
[3] |
Panda S K, Baluška F, Matsumoto H. Aluminum stress signaling in plants. Plant Signal Behav, 2009, 4: 592-597.
doi: 8903 pmid: 19820334 |
[4] |
Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn S J, Ryan P R, Delhaize E, Matsumoto H. A wheat gene encoding an aluminum-activated malate transporter. Plant J, 2004, 37: 645-653.
doi: 10.1111/j.1365-313x.2003.01991.x pmid: 14871306 |
[5] |
Krill A M, Kirst M, Kochian L V, Buckler E S, Hoekenga O A. Association and linkage analysis of aluminum tolerance genes in maize. PLoS One, 2010, 5: e9958.
doi: 10.1371/journal.pone.0009958 |
[6] |
Sharma T, Dreyer I, Kochian L, Piñeros M A. The ALMT family of organic acid transporters in plants and their involvement in detoxification and nutrient security. Front Plant Sci, 2016, 7: 1488.
pmid: 27757118 |
[7] |
Bojórquez-Quintal E, Escalante-Magaña C, Echevarría-Machado I, Martínez-Estévez M. Aluminum, a friend or foe of higher plants in acid soils. Front Plant Sci, 2017, 8: 1767.
doi: 10.3389/fpls.2017.01767 pmid: 29075280 |
[8] |
Inostroza-Blancheteau C, Rengel Z, Alberdi M, Mora M L, Aquea F, Arce-Johnson P, Reyes-Díaz M. Molecular and physiological strategies to increase aluminum resistance in plants. Mol Biol Rep, 2012, 39: 2069-2079.
doi: 10.1007/s11033-011-0954-4 pmid: 21660471 |
[9] |
Li J Y, Liu J, Dong D, Jia X, McCouch S R, Kochian L V. Natural variation underlies alterations in Nramp aluminum transporter (NRAT1) expression and function that play a key role in rice aluminum tolerance. Proc Natl Acad Sci USA, 2014, 111: 6503-6508.
doi: 10.1073/pnas.1318975111 |
[10] |
Wu Y, Yang Z, How J, Xu H, Chen L, Li K. Overexpression of a peroxidase gene (AtPrx64) of Arabidopsis thaliana in tobacco improves plant’s tolerance to aluminum stress. Plant Mol Biol, 2017, 95: 157-168.
doi: 10.1007/s11103-017-0644-2 |
[11] |
Iuchi S, Koyama H, Iuchi A, Kobayashi Y, Kitabayashi S, Kobayashi Y, Ikka T, Hirayama T, Shinozaki K, Kobayashi M. Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proc Natl Acad Sci USA, 2007, 104: 9900-9905.
doi: 10.1073/pnas.0700117104 |
[12] |
Sawaki Y, Iuchi S, Kobayashi Y, Ikka T, Sakurai N, Fujita M, Shinozaki K, Shibata D, Kobayashi M, Koyama H. STOP 1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities. Plant Physiol, 2009, 150: 281-294.
doi: 10.1104/pp.108.134700 |
[13] |
鲁海琴, 陈丽, 陈磊, 张盈川, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-Bna-miR311-HSC70-1模块调控甘蓝型油菜响应热胁迫的机制. 作物学报, 2020, 46: 1474-1484.
doi: 10.3724/SP.J.1006.2020.04014 |
Lu H Q, Chen L, Chen L, Zhang Y C, Wen J, Yi B, Tu J X, Fu T D, Shen J X. Mechanism research of Bna-Bna-miR311-HSC70-1 module regulating heat stress response in Brassica napus L. Acta Agron Sin, 2020, 46: 1474-1484 (in Chinese with English abstract). | |
[14] |
Lima J C, Arenhart R A, Margis-Pinheiro M, Margis R. Aluminum triggers broad changes in microRNA expression in rice roots. Genet Mol Res, 2011, 10: 2817-2832.
doi: 10.4238/2011.November.10.4 pmid: 22095606 |
[15] |
Zeng Q Y, Yang C Y, Ma Q B, Li X P, Dong W W, Nian H. Identification of wild soybean miRNAs and their target genes responsive to aluminum stress. BMC Plant Biol, 2012, 12: 182.
doi: 10.1186/1471-2229-12-182 |
[16] |
He H, He L, Gu M. Role of microRNAs in aluminum stress in plants. Plant Cell Rep, 2014, 33: 831-836.
doi: 10.1007/s00299-014-1565-z pmid: 24413694 |
[17] | 陈丽. 甘蓝型油菜株型及角果长度相关miRNA和靶基因的挖掘. 华中农业大学博士学位论文, 湖北武汉, 2018. |
Chen L. The Study of miRNA and Targets Regulate Plant Architecture and Silique Length in Brassica napus L. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2018. (in Chinese with English abstract) | |
[18] |
Varkonyi-Gasic E, Wu R, Wood M, Walton E F, Hellens R P. Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods, 2007, 3: 12.
pmid: 17931426 |
[19] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[20] | 金建峰. 番茄两个NAC转录因子响应铝胁迫的功能研究. 浙江大学博士学位论文, 浙江杭州, 2021. |
Jin J F. The Study on the Roles of Two NAC Transcription Factors in Response to Aluminum Stress in Tomato. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2021. (in Chinese with English abstract) | |
[21] |
Xu K, Wu N, Yao W, Li X, Zhou Y, Li H. The biological function and roles in phytohormone signaling of the F-Box protein in plants. Agronomy, 2021, 11: 2360.
doi: 10.3390/agronomy11112360 |
[22] |
Hong M J, Kim J B, Seo Y W, Kim D Y. Regulation of glycosylphosphatidylinositol-anchored protein (GPI-AP) expression by F-Box/LRR-Repeat (FBXL) protein in wheat (Triticum aestivum L.). Plants, 2021, 10: 1606.
doi: 10.3390/plants10081606 |
[23] |
Yu Y, Wang P, Bai Y, Wang Y, Liu C, Ni Z. The soybean F-box protein GmFBX176 regulates ABA-mediated responses to drought and salt stress. Environ Exp Bot, 2020, 176: 104056.
doi: 10.1016/j.envexpbot.2020.104056 |
[24] |
Zhang Y, Zhang J, Guo J, Zhou F, Singh S, Xu X, Xie Q, Yang Z, Huang C F. F-box protein RAE1 regulates the stability of the aluminum-resistance transcription factor STOP1 in Arabidopsis. Proc Natl Acad Sci USA, 2019, 116: 319-327.
doi: 10.1073/pnas.1814426116 pmid: 30559192 |
[25] |
Sawaki Y, Iuchi S, Kobayashi Y, Ikka T, Sakurai N, Fujita M, Shinozaki K, Shibata D, Kobayashi M, Koyama H. STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities. Plant Physiol, 2009, 150: 281-294.
doi: 10.1104/pp.108.134700 |
[26] |
Shetty R, Vidya C S N, Prakash N B, Lux A, Vaculik M. Aluminum toxicity in plants and its possible mitigation in acid soils by biochar: a review. Sci Total Environ, 2021, 765: 142744.
doi: 10.1016/j.scitotenv.2020.142744 |
[27] |
Bose J, Babourina O, Rengel Z. Role of magnesium in alleviation of aluminium toxicity in plants. J Exp Bot, 2011, 62: 2251-2264.
doi: 10.1093/jxb/erq456 pmid: 21273333 |
[28] |
Ohyama Y, Ito H, Kobayashi Y, Ikka T, Morita A, Kobayashi M, Imaizumi R, Aoki T, Komatsu K, Sakata Y, Iuchi S, Koyama H. Characterization of AtSTOP1orthologous genes in tobacco and other plant species. Plant Physiol, 2013, 162: 1937-1946.
doi: 10.1104/pp.113.218958 |
[29] |
Sagi M, Fluhr R. Superoxide production by plant homologues of the gp91phox NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol, 2001, 126: 1281-1290.
doi: 10.1104/pp.126.3.1281 pmid: 11457979 |
[30] |
Daspute A A, Sadhukhan A, Tokizawa M, Kobayashi Y, Panda S K, Koyama H. Transcriptional regulation of aluminum- tolerance genes in higher plants: clarifying the underlying molecular mechanisms. Front Plant Sci, 2017, 8: 1358.
doi: 10.3389/fpls.2017.01358 |
[1] | ZHANG Wen-Xuan, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome editing of BnaMPK6 gene by CRISPR/Cas9 for loss of salt tolerance in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(2): 321-331. |
[2] | MA Li, BAI Jing, ZHAO Yu-Hong, SUN Bo-Lin, HOU Xian-Fei, FANG Yan, WANG Wang-Tian, PU Yuan-Yuan, LIU Li-Jun, XU Jia, TAO Xiao-Lei, SUN Wan-Cang, WU Jun-Yan. Protein and physiological differences under cold stress, and identification and analysis of BnGSTs in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(1): 153-166. |
[3] | WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769. |
[4] | WU Jia-Yi, YUAN Fang, MENG Li-Jiao, LI Chen-Yang, SHI Hong-Song, BAI Yan-Song, WU Xiao-Ru, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. QTL mapping and candidate genes screening of photosynthesis-related traits in Brassica napus L. during seedling stage under aluminum stress [J]. Acta Agronomica Sinica, 2022, 48(11): 2749-2764. |
[5] | ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598. |
[6] | LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637. |
[7] | MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471. |
[8] | WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422. |
[9] | GUO Qing-Qing, ZHOU Rong, CHEN Xue, CHEN Lei, LI Jia-Na, WANG Rui. Location and InDel markers for candidate interval of the orange petal gene in Brassica napus L. by next generation sequencing [J]. Acta Agronomica Sinica, 2021, 47(11): 2163-2172. |
[10] | LEI Wei, WANG Rui-Li, WANG Liu-Yan, YUAN Fang, MENG Li-Jiao, XING Ming-Li, XU Lu, TANG Zhang-Lin, LI Jia-Na, CUI Cui, ZHOU Qing-Yuan. Genome-wide association study of seed density and its related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(11): 2099-2110. |
[11] | WANG Rui-Li,WANG Liu-Yan,YE Sang,Gao Huan-Huan,LEI Wei,WU Jia-Yi,YUAN Fang,MENG Li-Jiao,TANG Zhang-Lin,LI Jia-Na,ZHOU Qing-Yuan,CUI Cui. QTL mapping of seed germination-related traits in Brassica napus L. under aluminum toxicity stress [J]. Acta Agronomica Sinica, 2020, 46(6): 832-843. |
[12] | LYU Wei-Sheng, XIAO Fu-Liang, ZHANG Shao-Wen, ZHENG Wei, HUANG Tian-Bao, XIAO Xiao-Jun, LI Ya-Zhen, WU Yan, HAN De-Peng, XIAO Guo-Bin, ZHANG Xue-Kun. Effects of sowing and fertilizing methods on yield and fertilizer use efficiency in red-soil dryland rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1790-1800. |
[13] | HU Mao-Long, CHENG Li, GUO Yue, LONG Wei-Hua, GAO Jian-Qin, PU Hui-Ming, ZHANG Jie-Fu, CHEN Song. Development and application of the marker for imidazolinone-resistant gene in Brassica napus [J]. Acta Agronomica Sinica, 2020, 46(10): 1639-1646. |
[14] | Cun-Min QU,Guo-Qiang MA,Mei-Chen ZHU,Xiao-Hu HUANG,Le-Dong JIA,Shu-Xian WANG,Hui-Yan ZHAO,Xin-Fu XU,Kun LU,Jia-Na LI,Rui WANG. Genome-wide association of roots, hypocotyls and fresh weight at germination stage under as stress in Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(2): 175-187. |
[15] | Yang-Yang LI,Rong-Rong JING,Rong-Rong LYU,Peng-Cheng SHI,Xin LI,Qin WANG,Dan WU,Qing-Yuan ZHOU,Jia-Na LI,Zhang-Lin TANG. Genome-wide association analysis and candidate genes prediction of waterlogging-responding traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(12): 1806-1821. |
|