Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (7): 1843-1859.doi: 10.3724/SP.J.1006.2023.24173
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
WANG Rang-Jian1,2,*(), YANG Jun1,2, ZHANG Li-Lan1,2, GAO Xiang-Feng1,2
[1] |
Inouye S, Takizawa T, Yamaguchi H. Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J Antimicrob Chemoth, 2001, 47: 565-573.
doi: 10.1093/jac/47.5.565 pmid: 11328766 |
[2] |
Wei S, Reuveny H, Bravdo B A, Shoseyov O. Hydrolysis of glycosidically bound volatiles from apple leaves (cv. Anna) by Aspergillus niger β-glucosidase affects the behavior of codling moth (Cydia pomonella L.). J Agric Food Chem, 2004, 52: 6212-6216.
doi: 10.1021/jf0495789 |
[3] |
Magnard J, Roccia A, Caissard J, Vergne P, Sun P, Hecquet R, Dubois A, Oyant L, Jullien F, Nicole F, Raymond O, Huguet S, Baltenweck R, Meyer S, Claudel P, Jeauffre J, Rohmer M, Foucher F, Hugueneyp P, Bendahmane M, Baudino S. Biosynthesis of monoterpene scent compounds in roses. Science, 2015, 349: 81-83.
doi: 10.1126/science.aab0696 |
[4] |
Zhao M Y, Wang L, Wang J M, Jin J Y, Zhang N, Lei L, Gao T, Jing T T, Zhang S R, Wu Y, Wu B, Hu Y Q, Wan X C, Schwab W, Song C K. Induction of priming by cold stress via inducible volatile cues in neighboring tea plants. J Integr Plant Biol, 2020, 62: 1461-1468.
doi: 10.1111/jipb.12937 |
[5] |
Wang D M, Yoshimura T, Kubota K, Kobayashi A. Analysis of glycosidically bound aroma precursors in tea leaves: I. Qualitative and quantitative analyses of glycosides with aglycons as aroma compounds. J Agric Food Chem, 2000, 48: 5411-5418.
doi: 10.1021/jf000443m |
[6] |
Mizutani M, Nakanishi H, Ema J, Ma S, Noguchi E, Inohara-ochiiai M, Fukachimizutani F, Nakao M, Sakata K. Cloning of β-primeverosidase from tea leaves, a key enzyme in tea aroma formation. Plant Physiol, 2002, 130: 2164-2176.
doi: 10.1104/pp.102.011023 |
[7] |
Sarry J, Gunata Z. Plant and microbial glycoside hydrolases: volatile release from glycosidic aroma precursors. Food Chem, 2004, 87: 509-521.
doi: 10.1016/j.foodchem.2004.01.003 |
[8] |
Bock K W. The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and plants: animal-plant arms-race and co-evolution. Biochem Pharmacol, 2015, 99: 11-17.
doi: 10.1016/j.bcp.2015.10.001 |
[9] |
Stahlbiskup E, Intert F, Holthuijzen J, Stengele M, Schulz G.Glycosidically bound volatiles-a review 1986-1991. Flavour Frag J, 1993, 8: 61-80.
doi: 10.1002/(ISSN)1099-1026 |
[10] |
Guo W, Hosoi R, Sakata K, Watanabe N, Yagi A, Ina K, Luo S. (S)-linalyl,2-phenylethyl, and benzyl disaccharide glycosides isolated as aroma precursors from oolong tea leaves. Biosci Biotechnol Biochem, 1994, 58: 1532-1534.
doi: 10.1271/bbb.58.1532 |
[11] |
Candela L, Formato M, Crescente G, Piccolella S, Pacifico S. Coumaroyl flavonol glycosides and more in marketed green teas: an intrinsic value beyond much-lauded catechins. Molecules, 2020, 25: 1765.
doi: 10.3390/molecules25081765 |
[12] |
Gu X G, Yao C C, Zhang Z Z, Wan X C, Ning J M, Shao W F. GC-ECD method for determination of glucosidically bound aroma precursors in fresh tea leaves. Chromatographia, 2011, 73: 189-193.
doi: 10.1007/s10337-010-1816-2 |
[13] | Ogawa K, Moon J H, Guo W F, Yagi A, Watanabe N, Sakata K. A study on tea aroma formation mechanism: alcoholic aroma precursor amounts and glycosidase activity in parts of the tea plant. Zeitschrift Fur Naturforsch Sect C-J Biosci, 1995, 50: 493-498. |
[14] |
Wang D M, Kurasawa E, Yamaguchi Y, Kubota K, Kobayashi A. Analysis of glycosidically bound aroma precursors in tea leaves: II. Changes in glycoside contents and glycosidase activities in tea leaves during the black tea manufacturing process. J Agric Food Chem, 2001, 49: 1900-1903.
doi: 10.1021/jf001077+ |
[15] |
Dai W D, Tan J F, Lu M L, Xie D C, Li P L, Lyu H P, Zhu Y, Guo L, Zhang Y, Peng Q H, Lin Z. Nontargeted modification-specific metabolomics investigation of glycosylated secondary metabolites in tea (Camellia sinensis L.) based on liquid chromatography-high resolution mass spectrometry. J Agric Food Chem, 2016, 64: 6783-6790.
doi: 10.1021/acs.jafc.6b02411 |
[16] |
Rawat R, Gulati A. Seasonal and clonal variations in some major glycosidic bound volatiles in Kangra tea (Camellia sinensis (L.) O. Kuntze). Eur Food Res Technol, 2008, 226: 1241-1249.
doi: 10.1007/s00217-007-0753-2 |
[17] |
Cui J L, Katsuno T, Totsuka K, Ohnishi T, Takemoto H, Mase N, Toda M, Narumi T, Sato K, Matsuo T, Mizutani K, Yang Z Y, Watanabe N, Tong H R. Characteristic fluctuations in glycosidically bound volatiles during tea processing and identification of their unstable derivatives. J Agric Food Chem, 2016, 64: 1151-1157.
doi: 10.1021/acs.jafc.5b05072 |
[18] |
Ohgami S, Ono E, Horikawa M, Murata J, Totsuka K, Toyonaga H, Ohba Y, Dohra H, Asai T, Matsui K, Mizutani M, Watanabe N, Ohnishi T. Volatile glycosylation in tea plants: sequential glycosylations for the biosynthesis of aroma β-primeverosides are catalyzed by two Camellia sinensis glycosyltransferases. Plant Physiol, 2015, 168: 464-477.
doi: 10.1104/pp.15.00403 pmid: 25922059 |
[19] | Carl S R, Stephen G W. Glycosidase mechanisms. Curr Opin Plant Biol, 2000, 4: 573-580. |
[20] |
杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选. 作物学报, 2022, 48: 1813-1821.
doi: 10.3724/SP.J.1006.2022.12047 |
Yang F, Zhang Z F, Nan B, Xiao B Z. Genome-wide association analysis and candidate gene selection of yield related traits in rice. Acta Agron Sin, 2022, 48: 1813-1821. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.12047 |
|
[21] |
谢磊, 任毅, 张新忠, 王继庆, 张志辉, 石书兵, 耿洪伟. 小麦穗发芽性状的全基因组关联分析. 作物学报, 2021, 47: 1891-1902.
doi: 10.3724/SP.J.1006.2021.01078 |
Xie L, Ren Y, Zhang X Z, Wang J Q, Zhang Z H, Shi S B, Geng H W. Genome-wide association study of pre-harvest sprouting traits in wheat. Acta Agron Sin, 2021, 47: 1891-1902. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.01078 |
|
[22] |
渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构. 作物学报, 2022, 48: 304-319.
doi: 10.3724/SP.J.1006.2022.13002 |
Qu J Z, Feng W H, Zhang X H, Xu S T, Xue J Q. Dissecting the genetic architecture of maize kernel size based on genome-wide association study. Acta Agron Sin, 2022, 48: 304-319. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.13002 |
|
[23] |
Wang L, Yang Y M, Zhang S Y, Che Z J, Yuan W J, Yu D Y. GWAS reveals two novel loci for photosynthesis-related traits in soybean. Mol Genet Genomics, 2020, 295: 705-716.
doi: 10.1007/s00438-020-01661-1 pmid: 32166500 |
[24] |
Wang R J, Gao X F, Yang J, Kong X R. Genome-wide association study to identify favorable SNP allelic variations and candidate genes that control the timing of spring bud flush of tea (Camellia sinensis) using SLAF-seq. J Agric Food Chem, 2019, 67: 10380-10391.
doi: 10.1021/acs.jafc.9b03330 |
[25] |
Fang K X, Xia Z Q, Li H J, Jiang X H, Qin D D, Wang Q S, Wang Q, Pan C D, Li B, Wu H L. Genome-wide association analysis identified molecular markers associated with important tea flavor-related metabolites. Hortic Res, 2021, 8: 42.
doi: 10.1038/s41438-021-00477-3 |
[26] | 王让剑, 苏德森, 吴建衍, 黄崇耀, 陈立松. 超高效液相色谱-串联质谱法测定茶树新梢中两种香叶醇糖苷含量. 茶叶学报, 2020, 61(3): 114-119. |
Wang R J, Su D S, Wu J Y, Huang C Y, Chen L S. UHPLC MS/MS determination of geraniol glycosides in tea shoots. Acta Tea Sin, 2020, 61(3): 114-119 ( in Chinese with English abstract). | |
[27] |
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25: 1754-1760.
doi: 10.1093/bioinformatics/btp324 pmid: 19451168 |
[28] |
Mckenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, Depristo A. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010, 20: 1297-1303.
doi: 10.1101/gr.107524.110 pmid: 20644199 |
[29] |
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics, 2009, 25: 2078-2079.
doi: 10.1093/bioinformatics/btp352 pmid: 19505943 |
[30] |
Alexander D H, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res, 2009, 19: 1655-1664.
doi: 10.1101/gr.094052.109 pmid: 19648217 |
[31] |
Alkes L P, Nick J P, Robert M P, Michael E W, Nancy A S, David R. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet, 2006, 38: 904-909.
doi: 10.1038/ng1847 pmid: 16862161 |
[32] |
Purcell S, Neale B, Todd-brown K, Thomas L, Ferreira M, Bender D, Maller J, Sklar P, Bakker P, Daly M J. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet, 2007, 81: 559-575.
doi: 10.1086/519795 pmid: 17701901 |
[33] |
Bradbury P J, Zhang Z W, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
doi: 10.1093/bioinformatics/btm308 pmid: 17586829 |
[34] |
Robinson M D, Mccarthy D J, Smyth G K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010, 26: 139-140.
doi: 10.1093/bioinformatics/btp616 pmid: 19910308 |
[35] | 王愿, 王晓坤, 戈海曼, 杨磊. 拟南芥富含亮氨酸重复序列类受体激酶AtLRR78A的定位及其分选序列研究. 植物生理学报, 2017, 53: 477-486. |
Wang Y, Wang X K, Ge H M, Yang L. The localization and trafficking mechanism of AtLRR78A, a leucine-rich repeat receptor-like kinase (LRR-RLK) in Arabidopsis. J Plant Physiol, 2017, 53: 477-486. (in Chinese with English abstract) | |
[36] |
Klauser D, Desurmont G A, Glauser G, Vallat A, Flury P, Boller T, Turlings T C J, Bartels S. The Arabidopsis Pep-PEPR system is induced by herbivore feeding and contributes to JA-mediated plant defence against herbivory. J Exp Bot, 2015, 66: 5327-5336.
doi: 10.1093/jxb/erv250 |
[37] |
Gou X, Li J. Paired receptor and coreceptor kinases perceive extracellular signals to control plant development. Plant Physiol, 2020, 182: 1667-1681.
doi: 10.1104/pp.19.01343 pmid: 32144125 |
[38] |
Peng H, Zhang Q, Li Y D, Lei C L, Zhai Y, Sun X H, Sun D Y, Sun Y, Lu T G. A putative leucine-rich repeat receptor kinase, OsBRR1, is involved in rice blast resistance. Planta, 2009, 230: 377-385.
doi: 10.1007/s00425-009-0951-1 pmid: 19468748 |
[39] |
Hu L, Ye M, Kuai P, Ye M, Erb M, Liu Y. OsLRRRLK1, an early responsive leucine-rich repeat receptor-like kinase, initiates rice defense responses against a chewing herbivore. New Phytol, 2018, 219: 1097-1111.
doi: 10.1111/nph.2018.219.issue-3 |
[40] |
Dure L. A repeating 11-mer amino acid motif and plant desiccation. Plant J, 1993, 3: 363-369.
pmid: 8220448 |
[41] | Jung E H, Jung H W, Lee S C, Sang W H, Heu S, Hwang B K. Identification of a novel pathogen-induced gene encoding a leucine-rich repeat protein expressed in phloem cells of Capsicun annuum. Biochim Biophys Acta, 2004, 1676: 211-222. |
[42] | Hasegawa P M, Brseean R A, Zhu J K, Bohnert H J. Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol, 2000, 51: 463-499. |
[43] |
Xie Y R, Raruang Y, Chen Z Y, Brown R L, Cleveland T E. ZmGns, a maize class I β-1,3-glucanase, is induced by biotic stresses and possesses strong antimicrobial activity. J Integr Plant Biol, 2015, 57: 271-283.
doi: 10.1111/jipb.12286 |
[44] | McFadden H G, Chapple R, Feyter R D E, Dennis E. Expression of pathogenesis-related genes in cotton stem in response to infection by Verticillium dahliae. Physiol Mol Plant Pathol, 2001, 58: 119-131. |
[45] |
Jongedijk E, Tigelaar H, Vanroekel J S C, Bresvloemans S A, Dekker I, Vandenelzen P J M, Cornelissen B J C, Melchers L S. Synergistic activity of chitinases and β-1,3-glucanases enhances fungal resistance in transgenic tomato plants. Euphytica, 1995, 85: 173-180.
doi: 10.1007/BF00023946 |
[46] |
Jones J D G, Dangl J L. The plant immune system. Nature, 2006, 444: 323-329.
doi: 10.1038/nature05286 |
[47] |
Yuan X, Wang Z Y, Huang J Z, Xuan H, Gao Z Y. Phospholipidase Dδnegatively regulates the function of resistance to Pseudomonas syringae pv. Maculicola 1 (RPM1). Front Plant Sci, 2019, 9: 1991
doi: 10.3389/fpls.2018.01991 |
[48] |
Aharoni A, Jongsma M A, Bouwmeester H J. Volatile science? Metabolic engineering of terpenoids in plant. Trends Plant Sci, 2005, 10: 594-602.
doi: 10.1016/j.tplants.2005.10.005 pmid: 16290212 |
[1] | WANG Xing-Rong, ZHANG Yan-Jun, TU Qi-Qi, GONG Dian-Ming, QIU Fa-Zhan. Identification and gene localization of a novel maize nuclear male sterility mutant ms6 [J]. Acta Agronomica Sinica, 2023, 49(8): 2077-2087. |
[2] | LI Xing, YANG Hui, LUO Lu, LI Hua-Dong, ZHANG Kun, ZHANG Xiu-Rong, LI Yu-Ying, YU Hai-Yang, WANG Tian-Yu, LIU Jia-Qi, WANG Yao, LIU Feng-Zhen, WAN Yong-Shan. QTLs mapping for single-seed weight of cultivated peanut [J]. Acta Agronomica Sinica, 2023, 49(8): 2160-2170. |
[3] | YANG Shuo, WU Yang-Chun, LIU Xin-Lei, TANG Xiao-Fei, XUE Yong-Guo, CAO Dan, WANG Wan, LIU Ting-Xuan, QI Hang, LUAN Xiao-Yan, QIU Li-Juan. Fine mapping of qPRO-20-1 related to high protein content in soybean [J]. Acta Agronomica Sinica, 2023, 49(2): 310-320. |
[4] | ZHANG Chao, YANG Bo, ZHANG Li-Yuan, XIAO Zhong-Chun, LIU Jing-Sen, MA Jin-Qi, LU Kun, LI Jia-Na. Mining harvest index loci based on QTL mapping and genome-wide association study in rapessed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2180-2195. |
[5] | YANG Fei, ZHANG Zheng-Feng, NAN Bo, XIAO Ben-Ze. Genome-wide association analysis and candidate gene selection of yield related traits in rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1813-1821. |
[6] | GE Tian-Li, TIAN Yu, ZHANG Hao, LIU Zhang-Xiong, LI Ying-Hui, QIU Li-Juan. QTL mapping and candidate gene prediction of soybean 100-seed weight based on high-density bin map [J]. Acta Agronomica Sinica, 2022, 48(12): 2978-2986. |
[7] | WU Jia-Yi, YUAN Fang, MENG Li-Jiao, LI Chen-Yang, SHI Hong-Song, BAI Yan-Song, WU Xiao-Ru, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. QTL mapping and candidate genes screening of photosynthesis-related traits in Brassica napus L. during seedling stage under aluminum stress [J]. Acta Agronomica Sinica, 2022, 48(11): 2749-2764. |
[8] | ZENG Wei-Ying, LAI Zhen-Guang, SUN Zu-Dong, YANG Shou-Zhen, CHEN Huai-Zhu, TANG Xiang-Min. Identification of the candidate genes of soybean resistance to bean pyralid (Lamprosema indicata Fabricius) by BSA-Seq and RNA-Seq [J]. Acta Agronomica Sinica, 2021, 47(8): 1460-1471. |
[9] | CHEN Can, NONG Bao-Xuan, XIA Xiu-Zhong, ZHANG Zong-Qiong, ZENG Yu, FENG Rui, GUO Hui, DENG Guo-Fu, LI Dan-Ting, YANG Xing-Hai. Genome-wide association study of blast resistance loci in the core germplasm of rice landraces from Guangxi [J]. Acta Agronomica Sinica, 2021, 47(6): 1114-1123. |
[10] | LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637. |
[11] | WU Hai-Tao, ZHANG Yong, SU Bo-Hong, Lamlom F Sobhi, QIU Li-Juan. Development of molecular markers and fine mapping of qBN-18 locus related to branch number in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1667-1677. |
[12] | JIAN Hong-Ju, HUO Qiang, GAO Yu-Min, LI Yang-Yang, XIE Ling, WEI Li-Juan, LIU Lie-Zhao, LU Kun, LI Jia-Na. Selection of candidate genes for chlorophyll content in leaves of Brassica napus using genome-wide association analysis [J]. Acta Agronomica Sinica, 2020, 46(10): 1557-1565. |
[13] | Cun-Min QU,Guo-Qiang MA,Mei-Chen ZHU,Xiao-Hu HUANG,Le-Dong JIA,Shu-Xian WANG,Hui-Yan ZHAO,Xin-Fu XU,Kun LU,Jia-Na LI,Rui WANG. Genome-wide association of roots, hypocotyls and fresh weight at germination stage under as stress in Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(2): 175-187. |
[14] | Yang-Yang LI,Rong-Rong JING,Rong-Rong LYU,Peng-Cheng SHI,Xin LI,Qin WANG,Dan WU,Qing-Yuan ZHOU,Jia-Na LI,Zhang-Lin TANG. Genome-wide association analysis and candidate genes prediction of waterlogging-responding traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(12): 1806-1821. |
[15] | WANG Hui-Mei,CHEN Jie,SHI Yong-Feng,PAN Gang,SHEN Hai-Chao,WU Jian-Li. Development and Validation of CAPS Markers for Marker-Assisted Selection of Rice Blast Resistance Gene Pi25 [J]. Acta Agron Sin, 2012, 38(11): 1960-1968. |
|