Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (9): 2472-2484.doi: 10.3724/SP.J.1006.2023.24244

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

Interaction of sugarcane VAMP associated protein ScPVA12 with SCMV P3N-PIPO

YU Quan-Xin1(), YANG Zong-Tao1, ZHANG Hai1, CHENG Guang-Yuan1, ZHOU Ying-Shuan1, JIAO Wen-Di1, ZENG Kang1, LUO Ting-Xu1, HUANG Guo-Qiang1, ZHANG Mu-Qing2,*(), XU Jing-Sheng1,*()   

  1. 1Fujian Agriculture and Forestry University / Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs / National Engineering Research Center for Sugarcane / Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fuzhou 350002, Fujian, China
    2Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, Guangxi, China
  • Received:2022-10-28 Accepted:2023-02-10 Online:2023-09-12 Published:2023-02-28
  • Supported by:
    National Natural Science Foundation of China(31971991);Science and Technology Innovation Project of Fujian Agriculture and Forestry University(CXZX2019132G);Open Project Program of Guangxi Key Laboratory of Sugarcane Biology(GXKLSCB-202003)

Abstract:

PVA12 (plant vesicle-associated membrane protein (VAMP)-associated proteins homolog 12) is a member of the VAP27 family of proteins that mediate endoplasmic reticulum (ER) vesicle transport and membrane fusion in cells. Sugarcane (Saccharum spp. hybrid) PVA12 responding to Sugarcane mosaic virus (SCMV) infection has not been reported. In the present study, the coding gene of PVA12 was cloned from sugarcane cultivar ROC22 and designated as ScPVA12. The open reading frame (ORF) of ScPVA12 was 735 bp in length, which encoded a protein with 244 amino acids. Bioinformatics analysis showed that ScPVA12 was an unstable hydrophilic liposoluble protein with a transmembrane at the C-terminal domain. The ratio of the random coil ranked the highest in the secondary structure. Phylogenetic tree analysis revealed that the ScPVA12 was differentiated in monocotyledons and dicotyledons. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays showed that ScPVA12 interacted with SCMV-P3N-PIPO. Subcellular localization experiments indicated that ScPVA12 was localized in the ER. Co-localization experiments demonstrated that ScPVA12 and SCMV-P3N-PIPO co-localized in the ER. Real-time quantitative PCR analysis showed that ScPVA12 gene was expressed in all sugarcane tissues, with the lowest expression level in the eighth internode and the highest expression level in the 7th leaves. The relative expression level of ScPVA12 gene was significantly affected under the stress of SCMV. ScPVA12 was down-regulated upon SCMV infection and then recovered to the regular level compared with the control.

Key words: PVA12, Sugarcane mosaic virus, P3N-PIPO, protein interaction

Table 1

Primers used in this study"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
策略
Strategy
ScPVA12-F ATGGCCACCCCCGCCCCTGCCA 克隆
ScPVA12-R TGACTTCATCAGATAGCCCAGGATG Gene cloning
pPPR3-ScPVA12-F ATTAACAAGGCCATTACGGCCATGATGGCCACCCCCGCCCCTGCCA 酵母双杂交载体构建
Construction of yeast two-hybrid vector
pPPR3-ScPVA12-R TTGACTAAGGCCGAGGCGGCCGTTATGACTTCATCAGATAGCCCAG
221-ScPVA12-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGATGGCCACCCCCGCCCCTGCCA 亚细胞定位及双分子荧光互补载体构建
Construction of yeast subcellular localization and bimolecular fluorescence complementation vector
221-ScPVA12-R GGGGACCACTTTGTACAAGAAAGCTGGGTCTGACTTCATCAGATAGCCCAGGATG
ScPVA12-qF ATGGAAGAGGTCAAGTTGCGAGT 定量PCR
Real-time qPCR
ScPVA12-qR TGAATCCTCCAGCAGGTCCATCTAC
Actin-F CACGGCCACTGGAAGCA 内参基因
Reference gene
Actin-R TCCTCAG GGTTCCTGATGCC
eEF-1α-F TTTCACACTTGGAGTGAAGCAGAT 内参基因
Reference gene
eEF-1α-R GACTTCCTTCACAATCTCATCATAA
SCMV-CP-F TACAGAGAGACACACAGCTG SCMV检测
Detection of SCMV
SCMV-CP-R ACGCTACACCAGAAGACACT

Fig. 1

ScPVA12 protein domain A: the amino acid comparison between ScPVA12 and AtVAP27-3 (The red marks indicate MSD, the orange marks indicate CCD, and the green marks indicate TMD. B: the schematic diagram of ScPVA12 and AtVAP27-3 domain (Ruler: 250 amino acids)."

Fig. 2

Amino acid sequence alignment of ScPVA12 and PVA12s of other monocotyledon species Sorghum bicolor: SbPVA12 (XP_002445075.1); Miscanthus lutarioriparius: MlPVA12 (CAD6266147.1); Zea mays: ZmPVA12 (NP_001130606.1); Panicum miliaceum: PmPVA12 (RLN03983.1); Setaria italica: SiPVA12 (XP_004972806.1); Brachypodium distachyon: BdPVA12 (XP_003573476.1); Triticum dicoccoides: TdPVA12 (XP_037458000.1)."

Fig. 3

Phylogenetic tree of ScPVA12 protein and PVA12 proteins from other plant species Group I is monocot, in which I-1 is C4 plant subgroup and I-2 is C3 plant subgroup. Group II is a dicotyledonous group."

Fig. 4

Subcellular localization of ScPVA12 fused with YFP in the epidermal cells of N. benthamiana A: the subcellular localization of ScPVA12-YFP; B: the subcellular colocalization of ScPVA12-YFP with SCMV-P3N-PIPO-CFP. Pairwise combination of three fluorescent protein signals and observation of colocalization presented by using pseudo-color, and the combinations were ScPVA12-YFP (green pseudo-color)+HDEL-RFP (red pseudo-color), ScPVA12-YFP (red pseudo-color)+P3N-PIPO-CFP (green pseudo-color) and HDEL-RFP (red)+P3N-PIPO-CFP (green pseudo-color). Bar: 25 μm. The white arrow marks the location of colocalization."

Fig. 5

Y2H assays for the interaction between ScPVA12 and SCMV-P3N-PIPO The positive and negative controls are yeast cotransformants with pNubG-Fe65 plus pTSU2-APP and pNubG-Fe65 plus pPR3-N, respectively. DDO+X-Gal: synthetic defined yeast minimal medium lacking Leu and Trp with the treatment of 5-Bromo-4Chlor-3-Indoly1 β-D-Galactopyranoside; QDO+X-Gal: synthetic defined yeast minimal medium lacking Leu, Trp, His, and Ade but plus the X-Gal."

Fig. 6

BiFC assays for the interaction between ScPVA12 and SCMV-P3N-PIPO A: the N-terminal half of YFP was fused to the N-terminal of ScPVA12 to generate YN-ScPVA12, while the C-terminal half of YFP was fused to the C-terminal of SCMV-P3N-PIPO to generate P3N-PIPO-YC; B: the C-terminal half of YFP was fused to the C-terminal of ScPVA12 to generate ScPVA12-YC, while the N-terminal half of YFP was fused to the N-terminal of SCMV-P3N-PIPO to generate YN-P3N-PIPO. Plasmids combination of YN-ScPVA12 plus P3N-PIPO-YC (A), YN-P3N-PIPO plus ScPVA12-YC (B) were individually co-injected into N. benthamiana leaves for transient expression. The fluorescent signal was monitored by confocal microscopy at 48 hours post infiltration. Bar: 25 μm. The white arrow marks the fluorescent signal with a dotted structure."

Fig. 7

Relative expression profile of ScPVA12 gene in different sugarcane tissues The error bars represent the standard error of each treating group (n = 3). Bars super-scripted by different lowercase letters are significantly different at P < 0.05."

Fig. 8

Relative expression profile of ScPVA12 gene under the infection of SCMV The error bars represent the standard error of each treating group (n = 3). Bars super-scripted by different lowercase letters are significantly different at P < 0.05."

[1] 刘晓雪, 王新超. 2017/18榨季中国食糖生产形势分析与2018/19榨季展望. 农业展望, 2018, 14(11): 40-46.
Liu X X, Wang X C. Domestic sugar production situation in 2017/18 crushing season and its prospect for 2018/19 crushing season. Outlook Agric, 2018, 14(11): 40-46. (in Chinese with English abstract)
[2] 王明强, 李文凤, 黄应昆, 王晓燕, 卢文洁, 罗志明. 我国大陆蔗区发生的甘蔗病毒病及防控对策. 中国糖料, 2010, (4): 55-58.
Wang M Q, Li Y P, Huang Y K, Wang X Y, Lu W J, Luo Z M. Occurrence and controlling strategies on sugarcane viral diseases in Chinese mainland. Sugar Crops China, 2010, (4): 55-58. (in Chinese with English abstract)
[3] 刘燕群, 李玉萍, 梁伟红, 宋启道, 秦小立, 叶露. 国外甘蔗产业发展现状. 世界农业, 2015, (8): 147-152.
Liu Y Q, Li Y P, Liang W H, Song Q D, Qin X L, Ye L. Current status and development of the abroad sugarcane industry. World Agric, 2015, (8): 147-152. (in Chinese with English abstract)
[4] 李明, 田洪春, 黄智刚. 我国甘蔗产业发展现状研究. 中国糖料, 2017, 39(1): 67-70.
Li M, Tian H C, Huang Z G. Research on the development status of sugarcane industry in China. Sugar Crops China, 39(1): 67-70. (in Chinese with English abstract)
[5] 翁卓, 黄寒. 中国制糖产业竞争力对比与政策建议—基于对巴西、印度、泰国考察的比较. 甘蔗糖业, 2015, (4): 65-72.
Weng Z, Huang H. Comparative analysis on China’s sugar industry competitiveness: based on the comparison of Brazil, India and Thailand sugar industry. Sugar Cane, 2015, (4): 65-72. (in Chinese with English abstract)
[6] 黄应昆, 李文风, 卢文洁, 罗志明. 云南蔗区甘蔗花叶病流行原因及控制对策. 云南农业大学学报, 2007, 22: 935-938.
Huang Y K, Li W F, Lu W J, Luo Z M. The Causes of sugarcane mosaic disease epidemic in Yunnan sugarcane area and the control strategy. J Yunnan Agric Univ, 2007, 22: 935-938. (in Chinese with English abstract)
[7] 颜梅新, 黄伟华, 邓展云, 韦金菊. 广西甘蔗花叶病SCMV调查初报. 中国糖料, 2012, (1): 50-51.
Yan M X, Huang W H, Deng Z Y, Wei J J. Investigation of Sugarcane mosaic virus infecting sugarcane in Guangxi. Sugar Crops China, 2012, (1): 50-51. (in Chinese with English abstract)
[8] 熊国如, 李增平, 赵婷婷, 蔡文伟, 王俊刚, 王文治, 冯翠莲, 张雨良, 张树珍. 海南蔗区甘蔗病害种类及发生情况. 热带作物学报, 2010, 31: 1588-1595.
Xiong G R, Li Z P, Zhao T T, Cai W W, Wang J G, Wang W Z, Feng C L, Zhang Y L, Zhang S Z. Primary Investigation to Sugarcane on the Diseases in Hainan Province. Chin J Trop Crops, 2010, 31: 1588-1595. (in Chinese with English abstract)
[9] 蒋军喜, 谢艳, 阙海勇. 江西甘蔗花叶病病原的分子鉴定. 植物病理学报, 2009, 39: 203-206.
Jiang J X, Xie Y, Que H Y. Molecular identification of the pathogen of sugarcane mosaic disease in Jiangxi province. Acta Phytopathol Sin, 2009, 39: 203-206 (in Chinese with English abstract).
[10] 梁姗姗, 罗群, 陈如凯, 高三基. 引起甘蔗花叶病的病原分子生物学进展. 植物保护学报, 2017, 44: 363-370.
Liang S S, Luo Q, Chen R K, Gao S J. Advances in researches on molecular biology of viruses causing sugarcane mosaic. Acta Phytophy Sin, 2017, 44: 363-370 (in Chinese with English abstract).
[11] 冯小艳, 沈林波, 王文治, 杨本鹏, 王勤南, 周峰, 王俊刚, 熊国如, 张树珍. 中国甘蔗主要杂交亲本病毒性病害的分子鉴定. 分子植物育种, 2018, 16: 6729-6737.
Feng X Y, Shen L B, Wang W Z, Yang B P, Wang Q N, Zhou F, Wang J G, Xiong G R, Zhang S Z. Molecular identification of viral diseases in major sugarcane hybrid parents in China. Mol Plant Breed, 2018, 16: 6729-6737. (in Chinese with English abstract)
[12] 周国辉, 许东林, 沈万宽. 甘蔗重要病害研究及防治策略. 甘蔗糖业, 2005, (1): 11-16.
Zhou G H, Xu D L, Shen W K. On sugarcane major diseases and their controlling. Sugar Cane, 2005, (1): 11-16. (in Chinese)
[13] 周丰静, 黄诚华, 李正文, 商显坤, 黄伟华, 潘雪红, 魏吉利, 林善海. 广西蔗区甘蔗花叶病病毒种群分析. 南方农业学报, 2015, 46: 609-613.
Zhou F J, Huang C H, Li Z W, Shang X S, Huang W H, Pan X H, Wei J L, Lin S H. Analysis of the virus population causing Sugarcane mosaic virus disease in sugarcane growing area of Guangxi. J Southern Agric, 2015, 46: 609-613. (in Chinese with English abstract)
[14] 杨荣仲, 周会, 肖祎, 吕达, 廖红香, 陈道德, 刘昔辉, 雷敬超, 林垠孚. 甘蔗主要亲本自然条件下抗甘蔗花叶病测定. 中国糖料, 2020, 42(2): 47-52.
Yang R Z, Zhou H, Xiao Y, Lyu D, Liao H X, Chen D D, Liu X H, Lei J C, Lin Y F. Testing on sugarcane mosaic resistance of sugarcane major parents under field conditions. Sugar Crops China, 2020, 42(2): 47-52. (in Chinese with English abstract)
[15] Ling H, Huang N, Wu Q, Su Y, Peng Q, Ahmed W, Gao S, Su W, Que Y, Xu L. Transcriptional insights into the Sugarcane- Sorghum mosaic virus interaction. Trop Plant Biol, 2018, 11: 163-176.
doi: 10.1007/s12042-018-9210-6
[16] Akbar S, Yao W, Yu K, Qin L, Ruan M, Powell C A, Chen B, Zhang M. Photosynthetic characterization and expression profiles of sugarcane infected by Sugarcane mosaic virus (SCMV). Photosynth Res, 2020, 150: 279-294.
doi: 10.1007/s11120-019-00706-w
[17] Wu L, Zu X, Wang S, Chen Y. Sugarcane mosaic virus: long history but still a threat to industry. Crop Prot, 2012, 42: 74-78.
doi: 10.1016/j.cropro.2012.07.005
[18] 王文治, 马滋蔓, 张树珍, 杨本鹏, 蔡文伟, 顾丽红, 李娇. 甘蔗花叶病的基因工程研究. 生物技术通报, 2009, (1): 22-26.
Wang W Z, Ma Z M, Zhang S Z, Yang B P, Cai W W, Gu L H, Li J. Research on genetic engineering of sugarcane mosaic disease. Biotechnol Bull, 2009, (1): 22-26 (in Chinese with English abstract).
[19] 张海, 刘淑娴, 杨宗桃, 王彤, 程光远, 商贺阳, 徐景升. 甘蔗PsbS亚基应答甘蔗花叶病毒侵染及其与6K2蛋白的互作研究. 作物学报, 2020, 46: 1534-1545.
Zhang H, Liu S X, Yang Z T, Wang T, Cheng G Y, Shang H Y, Xu J S. Sugarcane PsbS subunit response to Sugarcane mosaic virus infection and its interaction with 6K2 protein. Acta Agron Sin, 2020, 46: 1534-1545. (in Chinese with English abstract)
[20] 郑艳茹, 翟玉山, 邓宇晴, 成伟, 程光远, 杨永庆, 徐景升. 甘蔗花叶病毒(SCMV)种群结构分析. 福建农林大学学报(自然科学版), 2016, 45(2): 135-140.
Zheng Y R, Zhai Y S, Deng Y Q, Cheng W, Cheng G Y, Yang Y Q, Xu J S. The population structure of Sugarcane mosaic virus (SCMV). J Fujian Agric For Univ (Nat Sci Edn), 2016, 45(2): 135-140. (in Chinese with English abstract)
[21] Yao W, Ruan M, Qin L, Yang C, Chen R, Chen B, Zhang M. Field performance of transgenic sugarcane lines resistant to Sugarcane mosaic virus. Front Plant Sci, 2017, 8: 104.
[22] Filloux D, Fernandez E, Comstock J C, Mollov D, Roumagnac P, Rott P. Viral metagenomic-based screening of sugarcane from Florida reveals occurrence of six sugarcane-infecting viruses and high prevalence of Sugarcane yellow leaf virus. Plant Dis, 2018, 102: 2317-2323.
doi: 10.1094/PDIS-04-18-0581-RE pmid: 30207899
[23] Yahaya A, Dangora D B, Kumar P L, Alegbejo M D, Gregg L, Alabi O J. Prevalence and genome characterization of field isolates of Sugarcane mosaic virus (SCMV) in Nigeria. Plant Dis, 2019, 103: 818-824.
doi: 10.1094/PDIS-08-18-1445-RE pmid: 30806574
[24] 邓宇晴, 杨永庆, 翟玉山, 程光远, 彭磊, 郑艳茹, 林彦铨, 徐景升. 甘蔗花叶病毒福州分离物全基因组克隆及种群分析. 植物病理学报, 2016, 46: 775-782.
Deng Y Q, Yang Y Q, Zhai Y S, Cheng G Y, Peng L, Zheng Y R, Lin Y Q, Xu J S. Genome cloning of two Sugarcane mosaic virus isolates from Fuzhou and phylogenetic analysis of SCMV. Acta Phytopathol Sin, 2016, 46: 775-782 (in Chinese with English abstract)
[25] Xu D L, Park J W, Mirkov T E, Zhou G H. Viruses causing mosaic disease in sugarcane and their genetic diversity in southern China. Arch Virol, 2008, 153: 1031-1039.
doi: 10.1007/s00705-008-0072-3 pmid: 18438601
[26] 沈林波, 吴楠楠, 冯小艳, 熊国如, 赵婷婷, 王文治, 王俊刚, 张树珍. 52个甘蔗品种在广西受病毒侵染情况. 热带作物学报, 2020, 41(1): 116-126.
Shen L B, Wu N N, Feng X Y, Xiong G R, Zhao T T, Wang W Z, Wang J G, Zhang S Z. Virus infection situation of fifty-two sugarcane varieties in Guangxi. Chin J Trop Crops, 2020, 41(1): 116-126. (in Chinese with English abstract)
[27] Olspert A, Chung B Y, Atkins J F, Carr J P, Firth A E. Transcriptional slippage in the positive-sense RNA virus family Potyviridae. Sci Rep, 2015, 16: 995-1004.
[28] Wei T, Zhang C, Hong J, Xiong R, Kasschau K D, Zhou X, Carrington J C, Wang A. Formation of complexes at plasmodesmata for potyvirus intercellular movement is mediated by the viral protein P3N-PIPO. PLoS Pathog, 2010, 6: e1000962.
[29] Chai M, Wu X, Liu J, Fang Y, Luan Y, Cui X, Zhou X, Wang A, Cheng X. P3N-PIPO interacts with P3 via the shared N-terminal domain to recruit viral replication vesicles for cell-to-cell movement. J Virol, 2020, 94: e01898.
[30] Tilsner J, Linnik O, Louveaux M, Roberts I M, Chapman S N, Oparka K J. Replication and trafficking of a plant virus are coupled at the entrances of plasmodesmata. J Cell Biol, 2013, 201: 981-995.
doi: 10.1083/jcb.201304003 pmid: 23798728
[31] 胡帆, 雷荣, 廖晓兰. 植物病毒在细胞间转运的机理探讨. 生物学杂志, 2013, 30(6): 81-85.
Hu F, Lei R, Liao X L. The mechanism of viral intracellular transportation in plant. J Biol, 2013, 30(6): 81-85. (in Chinese with English abstract)
[32] Hillung J, Elena S F, Cuevas J M. Intra-specific variability and biological relevance of P3N-PIPO protein length in potyviruses. BMC Evol Biol, 2013, 13: 249.
doi: 10.1186/1471-2148-13-249 pmid: 24225158
[33] Lin W, Feng Z, Prasanth K R, Liu Y, Nagy P D. Dynamic interplay between the co-opted Fis1 mitochondrial fission protein and membrane contact site proteins in supporting tombusvirus replication. PLoS Pathog, 2021, 17: e1009423.
[34] 崔晓艳, 陈新, 顾和平, 张红梅, 陈华涛, 袁星星. 马铃薯Y病毒属病毒P3和P3-PiPo蛋白功能研究进展. 微生物学通报, 2012, 39(1): 99-105.
Cui X Y, Chen X, Gu H P, Zhang H M, Chen H T, Yuan X X. The functional characterization of Potyvirus-encoded P3 and P3-PiPo protein. Microb China, 2012, 39(1): 99-105. (in Chinese with English abstract)
[35] Wang A. Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. Annu Rev Phytopathol, 2015, 53: 45-66.
doi: 10.1146/annurev-phyto-080614-120001 pmid: 25938276
[36] Cheng G, Dong M, Xu Q, Peng L, Yang Z, Wei T, Xu J. Dissecting the molecular mechanism of the subcellular localization and cell-to-cell movement of the Sugarcane mosaic virus P3N-PIPO. Sci Rep, 2017, 7: 9868.
doi: 10.1038/s41598-017-10497-6
[37] Saravanan R S, Slabaugh E, Singh V R, Lapidus L J, Haas T, Brandizzi F. The targeting of the oxysterol-binding protein ORP3a to the endoplasmic reticulum relies on the plant VAP33 homolog PVA12. Plant J, 2009, 58: 817-830.
doi: 10.1111/tpj.2009.58.issue-5
[38] Laurent F, Labesse G, de Wit P. Molecular cloning and partial characterization of a plant VAP33 homologue with a major sperm protein domain. Biochem Biophys Res Commun, 2000, 270: 286-292.
doi: 10.1006/bbrc.2000.2387
[39] Pérez-Sancho J, Tilsner J, Samuels A L, Botella M A, Bayer E M, Rosado A. Stitching organelles: organization and function of specialized membrane contact sites in plants. Trends Cell Biol, 2016, 26: 705-717.
doi: S0962-8924(16)30050-2 pmid: 27318776
[40] Takáč T, Šamajová O, Vadovič P, Pechan T, Šamaj J. Shot-gun proteomic analysis on roots of Arabidopsis pldα1 mutants suggesting the involvement of PLDα1 in mitochondrial protein import, vesicular trafficking and glucosinolate biosynthesis. Int J Mol Sci, 2018, 20: 82.
doi: 10.3390/ijms20010082
[41] Sutter J U, Campanoni P, Blatt M R, Paneque M. Setting SNAREs in a different wood. Traffic, 2006, 7: 627-638.
doi: 10.1111/j.1600-0854.2006.00414.x
[42] Ichikawa M, Nakai Y, Arima K, Nishiyama S, Hirano T, Sato M H. A VAMP-associated protein, PVA31 is involved in leaf senescence in Arabidopsis. Plant Signal Behav, 2015, 10: e990847.
[43] Wang P, Richardson C, Hawkins T J, Sparkes I, Hawes C, Hussey P J. Plant VAP27 proteins: domain characterization, intracellular localization and role in plant development. New Phytol, 2016, 210: 1311-1326.
doi: 10.1111/nph.13857 pmid: 27159525
[44] Loewen C J, Levine T P. A highly conserved binding site in vesicle-associated membrane protein-associated protein (VAP) for the FFAT motif of lipid-binding proteins. J Biol Chem, 2005, 280: 14097-14104.
doi: 10.1074/jbc.M500147200 pmid: 15668246
[45] Murphy S E, Levine T P. VAP, a versatile access point for the endoplasmic reticulum: review and analysis of FFAT-like motifs in the VAPome. Biochim Biophys Acta, 2016, 1861: 952-961.
doi: S1388-1981(16)30030-0 pmid: 26898182
[46] D’Ippólito S, Arias L A, Casalongué C A, Pagnussat G C, Fiol D F. The DC1-domain protein VACUOLELESS GAMETOPHYTES is essential for development of female and male gametophytes in Arabidopsis. Plant J, 2017, 90: 261-275.
doi: 10.1111/tpj.2017.90.issue-2
[47] 金红敏, 李立新. 拟南芥SNARE因子在膜泡运输中的功能. 植物学报, 2010, 45: 479-491.
doi: 10.3969/j.issn.1674-3466.2010.04.012
Jin H M, Li L X. Role of Arabidopsis SNARE proteins in vesicle trafficking. Chin Bull Bot, 2010, 45: 479-491. (in Chinese with English abstract)
[48] Stefano G, Renna L, Wormsbaecher C, Gamble J, Zienkiewicz K, Brandizzi F. Plant endocytosis requires the ER membrane- anchored proteins VAP27-1 and VAP27-3. Cell Rep, 2018, 23: 2299-2307.
doi: 10.1016/j.celrep.2018.04.091
[49] Wang P, Pleskot R, Zang J, Winkler J, Wang J, Yperman K, Zhang T, Wang K, Gong J, Guan Y, Richardson C, Duckney P, Vandorpe M, Mylle E, Fiserova J, Van Damme D, Hussey P J. Plant AtEH/Pan1 proteins drive autophagosome formation at ER-PM contact sites with actin and endocytic machinery. Nat Commun, 2019, 10: 5132.
doi: 10.1038/s41467-019-12782-6 pmid: 31723129
[50] Wang P, Hawkins T J, Richardson C, Cummins I, Deeks M J, Sparkes I, Hawes C, Hussey P J. The plant cytoskeleton, NET3C, and VAP27 mediate the link between the plasma membrane and endoplasmic reticulum. Curr Biol, 2014, 24: 1397-1405.
doi: S0960-9822(14)00528-4 pmid: 24909329
[51] Zhang Z, Thomma B P. Structure-function aspects of extracellular leucine-rich repeat-containing cell surface receptors in plants. J Integr Plant Biol, 2013, 55: 1212-1223.
doi: 10.1111/jipb.12080
[52] Carette J E, Verver J, Martens J, van Kampen T, Wellink J, van Kammen A. Characterization of plant proteins that interact with Cowpea mosaic virus ‘60K’ protein in the yeast two-hybrid system. J Gen Virol, 2002, 83: 885-893.
doi: 10.1099/0022-1317-83-4-885 pmid: 11907339
[53] Barajas D, Xu K, de Castro Martín I F, Sasvari Z, Brandizzi F, Risco C, Nagy P D. Co-opted oxysterol-binding ORP and VAP proteins channel sterols to RNA virus replication sites via membrane contact sites. PLoS Pathog, 2014, 10: e1004388.
[54] Lin L, Luo Z, Yan F, Lu Y, Zheng H, Chen J. Interaction between potyvirus P3 and ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) of host plants. Virus Genes, 2011, 43: 90-92.
doi: 10.1007/s11262-011-0596-6 pmid: 21400205
[55] 王倩. 调控黄瓜花叶病毒复制的寄主脂质因子的研究. 浙江理工大学硕士学位论文, 浙江杭州, 2019.
Wang Q. Study on the Regulation of Host Lipid Factors in CMV Replication. MS Thesis of Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China, 2019. (in Chinese with English abstract)
[56] Xu K, Nagy P D. Enrichment of phosphatidylethanolamine in viral replication compartments via co-opting the endosomal Rab5 small GTPase by a positive-strand RNA virus. PLoS Biol, 2016, 14: e2000128.
[57] Chuang C, Barajas D, Qin J, Nagy P D. Inactivation of the host lipin gene accelerates RNA virus replication through viral exploitation of the expanded endoplasmic reticulum membrane. PLoS Pathog, 2014, 10: e1003944.
[58] Sharma M, Sasvari Z, Nagy P D. Inhibition of sterol biosynthesis reduces tombusvirus replication in yeast and plants. J Virol, 2010, 84: 2270-2281.
doi: 10.1128/JVI.02003-09 pmid: 20015981
[59] Xu K, Nagy P D. RNA virus replication depends on enrichment of phosphatidylethanolamine at replication sites in subcellular membranes. Proc Natl Acad Sci USA, 2015, 112: E1782-E1791.
[60] Grison M S, Brocard L, Fouillen L, Nicolas W, Wewer V, Dörmann P, Nacir H, Benitez-Alfonso Y, Claverol S, Germain V, Boutté Y, Mongrand S, Bayer E M. Specific membrane lipid composition is important for plasmodesmata function in Arabidopsis. Plant Cell, 2015, 27: 1228-1250.
doi: 10.1105/tpc.114.135731
[61] Xie J, Jiang T, Li Z, Li X, Fan Z, Zhou T. Sugarcane mosaic virus remodels multiple intracellular organelles to form genomic RNA replication sites. Arch Virol, 2021, 166: 1921-1930.
doi: 10.1007/s00705-021-05077-z
[62] 邹文娇, 葛磊, 予茜. 氧化甾醇结合蛋白相关蛋白家族的研究进展. 植物学报, 2021, 56: 627-640.
doi: 10.11983/CBB21045
Zou W J, Ge L, Yu Q. Research advances in oxysterol-binding protein-related proteins. Chin Bull Bot, 2021, 56: 627-640. (in Chinese with English abstract)
[63] Wang P, Hawes C, Hussey P J. Plant endoplasmic reticulum- plasma membrane contact sites. Trends Plant Sci, 2017, 22: 289-297.
doi: 10.1016/j.tplants.2016.11.008
[64] Levy A, Tilsner J. Creating contacts between replication and movement at plasmodesmata: a role for membrane contact sites in plant virus infections? Front Plant Sci, 2020, 11: 862.
doi: 10.3389/fpls.2020.00862
[65] Zhang H, Cheng G, Yang Z, Wang T, Xu J. Identification of sugarcane host factors interacting with the 6K2protein of the Sugarcane mosaic nirus. Int J Mol Sci, 2019, 20: 3867.
doi: 10.3390/ijms20163867
[66] Cheng G, Yang Z, Zhang H, Zhang J, Xu J. Remorin interacting with PCaP1 impairs Turnip mosaic virus intercellular movement but is antagonised by VPg. New Phytol, 2020, 225: 2122-2139.
doi: 10.1111/nph.v225.5
[67] Hyodo K, Okuno T. Pathogenesis mediated by proviral host factors involved in translation and replication of plant positive-strand RNA viruses. Curr Opin Virol, 2016, 17: 11-18.
doi: S1879-6257(15)00162-5 pmid: 26651023
[68] Addy H S, Nurmalasari, Wahyudi A H S, Sholeh A, Anugrah C, Iriyanto F E S, Darmanto W, Sugiharto B. Detection and response of sugarcane against the infection of Sugarcane mosaic virus (SCMV) in Indonesia. Agronomy, 2017, 7: 50.
doi: 10.3390/agronomy7030050
[1] BAI Cheng-Cheng, YAO Xiao-Yao, WANG Yu-Lu, WANG Sai-Yu, LI Jin-Ying, JIANG You-Wei, JIN Shu-Rong, CHEN Chun-Jie, LIU Yu, WEI Xing-Yue, XU Xin-Fu, LI Jia-Na, NI Yu. Cloning of genes involved in cuticular very-long-chain alkane synthesis and its interaction with BnCER1-2 in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(4): 1016-1027.
[2] DU Juan, PENG Xiao-Jun, HOU Juan, LIU Teng-Fei, LIU Zeng, SONG Bo-Tao. Identification of potato amylase StBAM9 interacting protein and analysis of the interaction mechanism [J]. Acta Agronomica Sinica, 2023, 49(10): 2643-2653.
[3] YANG Zong-Tao, JIAO Wen-Di, ZHANG Hai, ZHANG Ke-Ming, CHENG Guang-Yuan, LUO Ting-Xu, ZENG Kang, ZHOU Ying-Shuan, XU Jing-Sheng . Interaction of sugarcane glutathione S-transferase ScGSTF1 with P3N-PIPO in response to SCMV infection [J]. Acta Agronomica Sinica, 2023, 49(10): 2665-2676.
[4] YANG Zong-Tao, LIU Shu-Xian, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane ubiquitin-like protein UBL5 responses to SCMV infection and interacts with SCMV-6K2 [J]. Acta Agronomica Sinica, 2022, 48(2): 332-341.
[5] LIU Shu-Xian, YANG Zong-Tao, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Interaction of sugarcane main facilitator superfamily member ScZIFL1 with 6K2 in response to Sugarcane mosaic virus infection [J]. Acta Agronomica Sinica, 2022, 48(12): 3080-3090.
[6] XU Bin, CAO Shao-Yu, SU Tian, PENG Meng-Ling, LYU Xia, LI Zhen-Lin, ZHANG Guo-Ping, XU Jun-Qiang. Interactions between CMLs and NPG1 and related proteins in pollen germination of Brassica oleracea L. var. capitata [J]. Acta Agronomica Sinica, 2022, 48(11): 2934-2944.
[7] ZHANG Hai, CHENG Guang-Yuan, YANG Zong-Tao, LIU Shu-Xian, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane PsbR subunit response to SCMV infection and its interaction with SCMV-6K2 [J]. Acta Agronomica Sinica, 2021, 47(8): 1522-1530.
[8] LI Lan-Lan, MU Dan, YAN Xue, YANG Lu-Ke, LIN Wen-Xiong, FANG Chang-Xun. Effect of OsPAL2;3 in regulation of rice allopathic inhibition on barnyardgrass (Echinochloa crusgalli L.) [J]. Acta Agronomica Sinica, 2021, 47(2): 197-209.
[9] MENG Yu-Yu, WEI Chun-Ru, FAN Run-Qiao, YU Xiu-Mei, WANG Xiao-Dong, ZHAO Wei-Quan, WEI Xin-Yan, KANG Zhen-Sheng, LIU Da-Qun. TaPP2-A13 gene shows induced expression pattern in wheat responses to stresses and interacts with adaptor protein SKP1 from SCF complex [J]. Acta Agronomica Sinica, 2021, 47(2): 224-236.
[10] ZHENG Qing-Lei,YU Chen-Jing,YAO Kun-Cun,HUANG Ning,QUE You-Xiong,LING Hui,XU Li-Ping. Cloning and expression analysis of sugarcane Fe/S precursor protein gene ScPetC [J]. Acta Agronomica Sinica, 2020, 46(6): 844-857.
[11] ZHANG Hai, LIU Shu-Xian, YANG Zong-Tao, WANG Tong, CHENG Guang-Yuan, SHANG He-Yang, XU Jing-Sheng. Sugarcane PsbS subunit response to Sugarcane mosaic virus infection and its interaction with 6K2 protein [J]. Acta Agronomica Sinica, 2020, 46(11): 1722-1733.
[12] YANG Sha,LI Yan,GUO Feng,ZHANG Jia-Lei,MENG Jing-Jing,LI Meng,WAN Shu-Bo,LI Xin-Guo. Screening of AhCaM-Interactive Proteins in Peanuts Using Yeast Two Hybrid System [J]. Acta Agron Sin, 2015, 41(07): 1056-1063.
[13] LIU Rong-Bang,CHEN Ming,GUO Meng-Meng,SI Qing-Lin,GAO Shi-Qing,XU Zhao-Shi,LI Lian-Cheng,MA You-Zhi,YIN Jun. Characterization and Functional Analysis of a Small GTP-binding Protein AtRAB Interacting with H+-Pyrophosphatase AVP1 in Arabidopsis thaliana [J]. Acta Agron Sin, 2014, 40(10): 1756-1766.
[14] ZHANG Xiao-Hong,XU Peng-Bo,GUO Meng-Meng,XU Zhao-Shi,LI Lian-Cheng,CHEN Ming,MA You-Zhi. Characteristic and Function Analysis of a Copper Ion Binding Protein, AtBCB Interacting with G Protein α Subunit GPA1 in Arabidopsis thaliana [J]. Acta Agron Sin, 2013, 39(11): 1952-1961.
[15] WANG Xin-Dong,CHEN Liang,ZHANG Zeng-Yan. Interaction between Wheat Resistance-related Kinase TiDPK1 and BYDV Coat Protein [J]. Acta Agron Sin, 2013, 39(10): 1720-1726.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[2] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[3] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[4] Wang Yiqun. Infection of Rhizobia to Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 32 -35 .
[5] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[6] CUI Xiu-Hui. Male Sterility Induced by Chemical Hybridizing Agent SQ-1 in Common Millet[J]. Acta Agron Sin, 2008, 34(01): 106 -110 .
[7] A JIA La-Tie;ZENG Long-Jun;XUE Da-Wei;HU Jiang;ZENG Da-Li;GAO Zhen-Yu;GUO Long-Biao;LI Shi-Gui;QIAN Qian
. QTL Analysis for Chlorophyll Content in Four Grain-Filling Stage in Rice[J]. Acta Agron Sin, 2008, 34(01): 61 -66 .
[8] YANG Wen-Xiong;YANG Fang-Ping;LIANG Dan;HE Zhong-Hu;SHANG Xun-Wu;XIA Xian-Chun. Molecular Characterization of Slow-Rusting Genes Lr34/Yr18 in Chinese Wheat Cultivars[J]. Acta Agron Sin, 2008, 34(07): 1109 -1113 .
[9] WANG Ying;WU Cun-Xiang;ZHANG Xue-Ming;WANG Yun-Peng;HAN Tian-Fu. Effects of Soybean Major Maturity Genes under Different Photoperiods[J]. Acta Agron Sin, 2008, 34(07): 1160 -1168 .
[10] WANG Guo-Li;GUO Zhen-Fei. Effects of Phosphorus Nutrient on the Photosynthetic Characteristics in Rice Cultivars with Different Cold-Sensitivity[J]. Acta Agron Sin, 2007, 33(08): 1385 -1389 .