Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (9): 2485-2497.doi: 10.3724/SP.J.1006.2023.24233

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

RT-PCR cloning and functional analysis of ScbHLH13 in sugarcane

MO Guang-Ling1(), YU Chen-Jing3, LIANG Yan-Lan1, ZHOU Ding-Gang4, LUO Jun1, WANG Mo1, QUE You-Xiong1, HUANG Ning2,*(), LING Hui2,*()   

  1. 1National Engineering Research Center for Sugarcane / College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    2College of Crop Science, Yulin Normal University, Yulin 537000, Guangxi, China
    3Guiyang Research Institute of Education Science, Guiyang 550000, Guizhou, China
    4College of Life Science, Hunan University of Science and Technology / Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Xiangtan 411201, Hunan, China
  • Received:2022-10-17 Accepted:2023-02-21 Online:2023-09-12 Published:2023-03-10
  • Supported by:
    National Natural Science Foundation of China(31901592);National Natural Science Foundation of China(32160435);Scientific Research Foundation of Yulin Normal University for High-level Talents(G2022ZK15)

Abstract:

The transcription factors in bHLH family are important regulators in controlling plant growth and development, secondary metabolism, and anthocyanin biosynthesis. In this study, we successfully cloned ScbHLH13 using sorghum bHLH13 (XM_002440799.2) as the probe sequence by RT-PCR in sugarcane. Meanwhile, the physicochemical properties of the gene and its encoded protein were predicted. Phylogenetic relationship, subcellular localization, and the relative expression pattern of ScbHLH13 were investigated. ScbHLH13 contained 586 amino acids, and mainly consisted of random coils and α-helice. It was hydrophilic, unstable, and weakly basic. Moreover, ScbHLH13 had the typical nuclear localization signals and no transmembrane. The sequence contained two typical conserved domains, bHLH-MYC, and HLH, which belonged to the bHLH superfamily. Analysis of sugarcane transcriptomes under low nitrogen, and Sorghum mosaic virus, and Sporisorium scitamineum invasion revealed that the transcriptional levels of ScbHLH13 were altered in response to various abiotic and biotic stresses. When transiently expressed in tobacco, ScbHLH13-YFP was observed in nuclei and on cell membrane, whereas it specifically localized in nuclei of sugarcane protoplasts. QRT-PCR assays showed that relative expression level of ScbHLH13 in sugarcane protoplasts could not induce transcription of the relative genes in anthocyanin synthesis and the metabolism pathway, suggesting that ScbHLH13 may not involve in anthocyanin biosynthesis and metabolism. In conclusion, this study explores the basic features and functions of ScbHLH13, which will be helpful for the future research on characterizing the biological roles of bHLH members in regulating sugarcane growth and defense.

Key words: sugarcane, protoplast, bHLH transcription factor, ScbHLH13 gene

Table 1

qRT-PCR primers for the ScbHLH13 gene and the synthetic genes of anthocyanin branch pathway"

引物名称
Primer
上游引物
Forword primer (5°-3°)
下游引物
Reverse primer (5°-3°)
引物用途
Primer function
ScbHLH13 CTAGGTCTTCATCAGTCCTTC TATACCATGTATACCGTCAGTG 基因克隆
Gene cloning
ScbHLH13-Gate GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGAAGACAGAGATAGAAGAGGTA GGGGACCACTTTGTACAAGAAAGCTGGGTCCACAGAGCTAGTTGCATTAGAAAT 构建表达载体
Constructing the expression vector
ScbHLH13-Q TCGACTTCCAGAGCCAACAC TTGGCTGTGACCTTCGACTC 实时荧光定量PCR
Real-time quantitative PCR
F3’H-Q GAGCTGCTAGTCAATGTGTGGG AGTTAGTGTGACCATCCGTAGC
A1-Q GATCCTGAAGCAGGTGCAGTTC AACCTCTCCGGGATGTCGT
CHI-Q GAGAAGTTCACAAGGGTGACCA GACGAGTCCTTGGAGAAGGC
F3H-Q GAGCAACGGCAGGTTCAAGA TACATCTCGGCGAAGGTGATG
CHS-Q GTTCCACCTGCTCAAGGACG GACATGTTGCCGTACTCGGAGA
ANS-Q CAGGCTCAGACCAATTGACAAC GACAGAATGAATGCTGGCTGAG
CUL TGCTGAATGTGTTGAGCAGC TTGTCGCGCTCCAAGTAGTC 内参基因
Reference genes
CAC ACAACGTCAGGCAAAGCAAA AGATCAACTCCACCTCTGCG

Fig. 1

Characteristic of ScbHLH13 nucleotide and its coding amino acid sequence A: the alignment of nucleic acid sequences from sorghum bHLH13 and ScbHLH13, the un-conserved sites was indicated with green; B: the conserved domain prediction of ScbHLH13 protein; C: the prediction of the transmembrane structure of ScbHLH13 protein."

Fig. 2

Multiple alignments of the amino acid sequences encoded by the ScbHLH13 and the bHLH13 from other homologous species"

Fig. 3

Tertiary structure analysis of bHLH13 protein based on AlphaFold modeling The tertiary structure of bHLH13 proteins from Saccharum spp. hybrids (GenBank accession No.: USN24528.1), Sorghum bicolor (GenBank accession No.: XP_002440844.1), Setaria italic (GenBank accession No.: XP_004960675.1), Panicum miliaceum (GenBank accession No.: RLN28435.1), Hordeum vulgare (GenBank accession No.: KAE8807589.1), and Aegilops tauschii (GenBank accession No.: XP_020150590.1) were achieved from AlphaFold database (https://alphafold.com/). The blue dashed line indicates the difference in the red β-sheet region, and the black arrow indicates the difference in the random coil or α-helix region."

Fig. 4

Phylogenetic tree of bHLH proteins from different plant species Red font indicates ScbHLH proteins. According to the previous reports about classification of bHLH family[31], 18 sequence, specifically belonging to different subfamily, from Arabidopsis and rice were used to generate the phylogenetic tree[21,32]. Different color represent the different bHLH subfamily including VII (a+b), VIIIb, III (a+c), IIIb, III (d+e), and IIIf."

Fig. 5

ScbHLH13 gene expression in different transcriptomes A: the transcriptomic data from sugarcane varieties Badila and ROC22 under low nitrogen stress; B: the transcriptomic data from sugarcane variety ROC22 under Sorghum mosaic virus stress; C: the transcriptomic data from sugarcane variety YC05-179 and ROC22 under Sporisorium scitamineum stress."

Fig. 6

Subcellular localization analyses of ScbHLH13 protein in the epidermis cell of Nicotiana benthamiana leaf The same field on the leaf was pictured through bright and yellow fluorescence, and merge channels. 35S::YFP was the result of injection of agrobacterium solution with empty pEarlegate101-YFP. 35S::ScbHLH13::YFP was the result of infusion of agrobacterium with pEarlegate101-ScbHLH13-YFP."

Fig. 7

Subcellular localization analyses of ScbHLH13 in sugarcane sheath protoplasts YFP is localized inside the cell. The fluorescence microscope selectes the blue fluorescence channel, and the excitation wavelength is 358-360 nm, and the emission wavelength 460-461 nm. Bar: 10 μm."

Fig. 8

Relative expression profile of anthocyanin synthesis genes in sugarcane protoplast bHLH represents the sugarcane ScbHLH13 gene. F3’H, A1, CHI, F3H, CHS, and ANS are the members of the anthocyanin branch pathway. bHLH is the experimental group and YFP is the control group. Different lowercase letters above the bars represent significant differences at P < 0.05."

[45] 赵鑫, 李建民, 朱雪冰, 郑旭莹, 宗渊, 刘宝龙. 黑果枸杞中调控花青素合成代谢的bHLH基因克隆与序列分析. 分子植物育种, 2018, 16: 6616-6623.
Zhao X, Li J M, Zhu X B, Zheng X Y, Zong Y, Liu B L. Cloning and sequence analysis of bHLH gene regulating anthocyanin biosynthesis and metabolism in the Lycium ruthenicum. Mol Plant Breed, 2018, 16: 6616-6623 (in Chinese with English abstract).
[46] Rajani S, Sundaresan V. The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence. Curr Biol, 2001, 11: 1914-1922.
doi: 10.1016/s0960-9822(01)00593-0 pmid: 11747817
[47] Wang L, Ran L, Hou Y, Tian Q, Li C, Liu R, Fan D, Luo K. The transcription factor MYB115 contributes to the regulation of proanthocyanidin biosynthesis and enhances fungal resistance in poplar. New Phytol, 2017, 215: 351-367.
doi: 10.1111/nph.14569 pmid: 28444797
[48] Li H, Sun J, Xu Y, Jiang H, Wu X, Li C. The bHLH-type transcription factor AtAIB positively regulates ABA response in Arabidopsis. Plant Mol Biol, 2007, 65: 655-665.
doi: 10.1007/s11103-007-9230-3
[49] Bai Q, Duan B, Ma J, Fen Y, Sun S, Long Q, Lyu J, Wan D. Coexpression of PalbHLH1 and PalMYB90 genes from Populus alba enhances pathogen resistance in poplar by increasing the flavonoid content. Front Plant Sci, 2019, 10: 1772.
doi: 10.3389/fpls.2019.01772
[50] Wang L, Xiang L, Hong J, Xie Z, Li B. Genome-wide analysis of bHLH transcription factor family reveals their involvement in biotic and abiotic stress responses in wheat (Triticum aestivum L.). 3 Biotech, 2019, 9: 236.
doi: 10.1007/s13205-019-1742-4
[51] Liu R, Wang Y, Tang S, Cai J, Liu S, Zheng P, Sun B. Genome-wide identification of the tea plant bHLH transcription factor family and discovery of candidate regulators of trichome formation. Sci Rep, 2021, 11: 10764.
doi: 10.1038/s41598-021-90205-7 pmid: 34031482
[52] 王建军, 徐园园, 刘同坤, 侯喜林. 紫菜薹BrbHLH49基因克隆与功能分析. 南京农业大学学报, 2021, 44: 421-427.
Wang J J, Xu Y Y, Liu T K, Hou X L. Cloning and function analysis of BrbHLH49 gene in purple tsai-tai. J Nanjing Agric Univ, 2021, 44: 421-427. (in Chinese with English abstract)
[53] Zheng L, Yao J, Gao F, Chen L, Zhang C, Lian L, Xie L, Wu Z, Xie L. The subcellular localization and functional analysis of fibrillarin2, a nucleolar protein in Nicotiana benthamiana. Biomed Res Int, 2016, 2016: 2831287.
[54] He F, Chen S, Ning Y, Wang G L. Rice (Oryza sativa) protoplast isolation and its application for transient expression analysis. Curr Protoc Plant Biol, 2016, 1: 373-383.
doi: 10.1002/cppb.20026 pmid: 30775867
[55] Jia X, Zhang X, Qu J, Rong H. Optimization conditions of wheat mesophyll protoplast isolation. Agric Sci, 2016, 7: 850-858.
[56] Xiong L, Li C, Li H, Lyu X, Zhao T, Liu J, Zuo Z, Liu B. A transient expression system in soybean mesophyll protoplasts reveals the formation of cytoplasmic GmCRY1 photobody-like structures. Sci China Life Sci, 2019, 62: 1070-1077.
doi: 10.1007/s11427-018-9496-5 pmid: 30929191
[57] Yoo S D, Cho Y H, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc, 2007, 2: 1565-1572.
doi: 10.1038/nprot.2007.199
[58] Cao J, Yao D, Lin F, Jiang M. PEG-mediated transient gene expression and silencing system in maize mesophyll protoplasts: a valuable tool for signal transduction study in maize. Acta Physiol Plant, 2014, 36: 1271-1281.
doi: 10.1007/s11738-014-1508-x
[59] 余春梅, 杨艳萍, 刘鑫燕, 周蓉, 华梁, 魏贺, 丁胜杰, 王道文. 普通小麦中双脱氢抗坏血酸还原酶(TaDHAR)基因的克隆与生化特性分析. 生物工程学报, 2009, 25: 1483-1489.
Yu C M, Yang Y P, Liu X Y, Zhou R, Hua L, Wei H, Ding S J, Wang D W. Molecular and biochemical analysis of two genes encoding dehydroascorbate reductase in common wheat. Chin J Biotechnol, 2009, 25: 1483-1489 (in Chinese with English abstract).
[60] Bai Y, Han N, Wu J, Yang Y, Wang J, Zhu M, Bian H. A transient gene expression system using barley protoplasts to evaluate microRNAs for post-transcriptional regulation of their target genes. Plant Cell Tissue Organ Cult, 2014, 119: 211-219.
doi: 10.1007/s11240-014-0527-z
[61] Liu C, Chen S, Wang S, Zhao X, Li K, Chen S, Qu G Z. A genome wide transcriptional study of Populus alba × P. tremula var. glandulosa in response to nitrogen deficiency stress. Physiol Mol Biol Plants, 2021, 27: 1277-1293.
doi: 10.1007/s12298-021-01012-3
[62] Zhang G, Cui X, Niu J, Ma F, Li P. Visible light regulates anthocyanin synthesis via malate dehydrogenases and the ethylene signaling pathway in plum (Prunus salicina L.). Physiol Plant, 2021, 172: 1739-1749.
doi: 10.1111/ppl.v172.3
[63] 贾赵东, 马佩勇, 边小峰, 杨清, 郭小丁, 谢一芝. 植物花青素合成代谢途径及其分子调控. 西北植物学报, 2014, 34: 1496-1506.
Jia Z D, Ma P Y, Bian X F, Yang Q, Guo X D, Xie Y Z. Biosynthesis metabolic pathway and molecular regulation of plants anthocyanin. Acta Bot Boreali-Occident Sin, 2014, 34: 1496-1506. (in Chinese with English abstract)
[64] Sun X, Zhang Z, Chen C, Wu W, Ren N, Jiang C, Yu J, Zhao Y, Zheng X, Yang Q, Zhang H, Li J, Li Z. The C-S-A gene system regulates hull pigmentation and reveals evolution of anthocyanin biosynthesis pathway in rice. J Exp Bot, 2018, 69: 1485-1498.
doi: 10.1093/jxb/ery001
[65] 杨鹏程, 周波, 李玉花. 植物花青素合成相关的bHLH转录因子. 植物生理学报, 2012, 48: 747-758.
Yang P C, Zhou B, Li Y H. The bHLH transcription factors involved in anthocyanin biosynthesis in plants. Plant Physiol J, 2012, 48: 747-758. (in Chinese with English abstract)
doi: 10.1104/pp.48.6.747
[66] Borevitz J O, Xia Y, Blount J, Dixon R A, Lamb C. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell, 2000, 12: 2383-2394.
doi: 10.1105/tpc.12.12.2383 pmid: 11148285
[67] Kastell A, Smetanska I, Ulrichs C, Cai Z, Mewis I. Effects of phytohormones and jasmonic acid on glucosinolate content in hairy root cultures of Sinapis alba and Brassica rapa. Appl Biochem Biotechnol, 2013, 169: 624-35.
doi: 10.1007/s12010-012-0017-x pmid: 23269631
[68] 梁立军, 杨祎辰, 王二欢, 邢丙聪, 梁宗锁. 植物花青素生物合成与调控研究进展. 安徽农业科学, 2018, 46(21): 18-24.
Liang L J, Yang Y C, Wang R H, Xing B C, Liang Z S. Research progress on biosynthesis and regulation of plant anthocyanin. J Anhui Agric Sci, 2018, 46(21): 18-24. (in Chinese with English abstract)
[1] Robinson K A, Lopes J M. SURVEY AND SUMMARY: Saccharomyces cerevisiae basic helix-loop-helix proteins regulate diverse biological processes. Nucleic Acids Res, 2000, 28: 1499-1505.
pmid: 10710415
[2] 孙鹤, 郎志宏, 朱莉, 黄大昉. 玉米、小麦、水稻原生质体制备条件优化. 生物工程学报, 2013, 29: 224-234.
Sun H, Lang Z H, Zhu L, Huang D F. Optimized condition for protoplast isolation from maize, wheat and rice leaves. Chin J Biotechnol, 2013, 29: 224-234 (in Chinese with English abstract).
[3] Hernandez J M, Feller A, Morohashi K, Frame K, Grotewold E. The basic helix loop helix domain of maize R links transcriptional regulation and histone modifications by recruitment of an EMSY-related factor. Proc Natl Acad Sci USA, 2007, 104: 17222-17227.
doi: 10.1073/pnas.0705629104 pmid: 17940002
[4] Arai H, Yanagiura K, Toyama Y, Morohashi K. Genome-wide analysis of MpBHLH12, a IIIf basic helix-loop-helix transcription factor of Marchantia polymorpha. J Plant Res, 2019, 132: 197-209.
doi: 10.1007/s10265-019-01095-w
[5] 张全琪, 朱家红, 倪燕妹, 张治礼. 植物bHLH转录因子的结构特点及其生物学功能. 热带亚热带植物学报, 2011, 19(1): 84-90.
Zhang Q Q, Zhu J H, Ni Y M, Zhang Z L. The structure and function of plant bHLH transcription factors. J Trop Subtrop Bot, 2011, 19(1): 84-90. (in Chinese with English abstract)
[6] Albert N W, Lewis D H, Zhang H, Irving L J, Jameson P E, Davies K M. Light-induced vegetative anthocyanin pigmentation in Petunia. J Exp Bot, 2009, 60: 2191-2202.
doi: 10.1093/jxb/erp097 pmid: 19380423
[7] Goodrich J, Carpenter R, Coen E S. A common gene regulates pigmentation pattern in diverse plant species. Cell, 1992, 68: 955-964.
doi: 10.1016/0092-8674(92)90038-e pmid: 1547495
[8] Qiu Z, Wang X, Gao J, Guo Y, Huang Z, Du Y. The tomato Hoffmans Anthocyaninless gene encodes a bHLH transcription factor involved in anthocyanin biosynthesis that is developmentally regulated and induced by low temperatures. PLoS One, 2016, 11: e0151067.
[9] Tao R, Yu W, Gao Y, Ni J, Yin L, Zhang X, Li H, Wang D, Bai S, Teng Y. Light-Induced Basic/Helix-Loop-Helix64 Enhances anthocyanin biosynthesis and undergoes CONSTITUTIVELY PHOTOMORPHOGENIC1-mediated degradation in pear. Plant Physiol, 2020, 184: 1684-1701.
doi: 10.1104/pp.20.01188 pmid: 33093233
[10] 高艳. 低氮胁迫诱导海棠花花青素积累及其基因与代谢分析. 西北农林科技大学硕士学位论文, 陕西杨陵, 2014.
Gao Y. Ammonium-Stress Enhances Biosynthesis of Anthocyanin in Apple (Malus spectabilis). MS Thesis of Northwest University of Agriculture and Forestry Science and Technology, Yangling, Shaanxi, China, 2014. (in Chinese with English abstract)
[11] Feller A, Machemer K, Braun E L, Grotewold E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J, 2011, 66: 94-116.
doi: 10.1111/tpj.2011.66.issue-1
[12] 宋建辉. bHLH113调控拟南芥开花和花青素合成的分子机制研究. 浙江农林大学硕士学位论文, 浙江杭州, 2020.
Song J H. The Molecular Regulatory Mechanism of Flowering and Anthocyanin by bHLH113 in Arabidopsis. MS Thesis of Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, China, 2020. (in Chinese with English abstract)
[13] Xie X B, Li S, Zhang R F, Zhao J, Chen Y C, Zhao Q, Yao Y X, You C X, Zhang X S, Hao Y J. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. Plant Cell Environ, 2012, 35: 1884-1897.
doi: 10.1111/j.1365-3040.2012.02523.x
[14] Xi H, He Y, Chen H. Functional characterization of SmbHLH13 in anthocyanin biosynthesis and flowering in eggplant. Hortic Plant J, 2021, 7: 73-80.
doi: 10.1016/j.hpj.2020.08.006
[15] Ludwig S R, Wessler S R. Maize R gene family: tissue-specific helix-loop-helix proteins. Cell, 1990, 62: 849-851.
pmid: 2203535
[16] Gould K S. Nature’s Swiss Army Knife: the diverse protective roles of anthocyanins in leaves. J Biomed Biotechnol, 2004, 2004: 314-320.
doi: 10.1155/S1110724304406147
[17] Paiva D. Special review issue on plant biochemistry: stress-induced phenylpropanoid metabolism. Plant Cell, 1995, 7: 1085-1097.
doi: 10.2307/3870059
[18] Chen X R, Wang Y, Zhao H H, Zhang X Y, Wang X B, Li D W, Yu J L, Han C G. Brassica yellows virus’ movement protein upregulates anthocyanin accumulation, leading to the development of purple leaf symptoms on Arabidopsis thaliana. Sci Rep, 2018, 8: 16273.
doi: 10.1038/s41598-018-34591-5
[19] Maritim T K, Masand M, Seth R, Sharma R K. Transcriptional analysis reveals key insights into seasonal induced anthocyanin degradation and leaf color transition in purple tea (Camellia sinensis (L.) O. Kuntze). Sci Rep, 2021, 11: 1244.
doi: 10.1038/s41598-020-80437-4
[20] Toledo-Ortiz G, Huq E, Quail P H. The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell, 2003, 15: 1749-1770.
doi: 10.1105/tpc.013839 pmid: 12897250
[21] Li X, Duan X, Jiang H, Sun Y, Tang Y, Yuan Z, Guo J, Liang W, Chen L, Yin J, Ma H, Wang J, Zhang D. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiol, 2006, 141: 1167-1184.
doi: 10.1104/pp.106.080580
[22] Wei K, Chen H. Comparative functional genomics analysis of bHLH gene family in rice, maize and wheat. BMC Plant Biol, 2018, 18: 309.
doi: 10.1186/s12870-018-1529-5 pmid: 30497403
[23] Alessio V M, Cavaçana N, Dantas L L B, Lee N, Hotta C T, Imaizumi T, Menossi M. The FBH family of bHLH transcription factors controls ACC synthase expression in sugarcane. J Exp Bot, 2018, 69: 2511-2525.
doi: 10.1093/jxb/ery083 pmid: 29514290
[24] 文明富, 杨俊贤, 潘方胤, 吴文龙, 陈月桂, 官锦燕. 甘蔗遗传改良研究进展. 广东农业科学, 2016, 43(6): 58-63.
Wen M F, Yang J X, Pan F Y, Wu W L, Chen Y G, Guan J Y. Review on genetic improvement of sugarcane (Saccharum spp.). Guangdong Agric Sci, 2016, 43(6): 58-63. (in Chinese with English abstract)
[25] Bassi D, Menossi M, Mattiello L. Nitrogen supply influences photosynthesis establishment along the sugarcane leaf. Sci Rep, 2018, 8: 2327.
doi: 10.1038/s41598-018-20653-1 pmid: 29396510
[26] Ling H, Huang N, Wu Q, Su Y, Peng Q, Ahmed W, Gao S, Su W, Que Y, Xu L. Transcriptional insights into the Sugarcane- Sorghum mosaic virus interaction. Trop Plant Biol, 2018, 11: 163-176.
doi: 10.1007/s12042-018-9210-6
[27] Que Y, Su Y, Guo J, Wu Q, Xu L. A global view of transcriptome dynamics during Sporisorium scitamineum challenge in sugarcane by RNA-Seq. PLoS One, 2014, 9: e106476.
[28] Yang Y, Gao S, Su Y, Lin Z, Guo J, Li M, Wang Z, Que Y, Xu L. Transcripts and low nitrogen tolerance: regulatory and metabolic pathways in sugarcane under low nitrogen stress. Environ Exp Bot, 2019, 163: 97-111.
doi: 10.1016/j.envexpbot.2019.04.010
[29] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析. 作物学报, 2021, 47: 882-893.
doi: 10.3724/SP.J.1006.2021.04128
Huang N, Hui Q L, Fang Z M, Li S S, Ling H, Que Y X, Yuan Z N. Identification, localization and expression analysis of beta- carotene isomerase gene family in sugarcane. Acta Agron Sin, 2021, 47: 882-893. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04128
[30] Nguyen Ba A N, Pogoutse A, Provart N, Moses A M. NLStradamus: a simple hidden markov model for nuclear localization signal prediction. BMC Bioinform, 2009, 10: 202.
doi: 10.1186/1471-2105-10-202
[31] Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martínez-García J F, Bilbao-Castro J R, Robertson D L. Genome-wide classification and evolutionary analysis of the bhlh family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. Plant Physiol, 2010, 153: 1398-1412.
doi: 10.1104/pp.110.153593 pmid: 20472752
[32] Bailey P C, Martin C, Toledo-Ortiz G, Quail P H, Huq E, Heim M A, Jakoby M, Werber M, Weisshaar B. Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana. Plant Cell, 2003, 15: 2497-2502.
pmid: 14600211
[33] Earley K W, Haag J R, Pontes O, Opper K, Juehne T, Song K, Pikaard C S. Gateway-compatible vectors for plant functional genomics and proteomics. Plant J, 2006, 45: 616-629.
doi: 10.1111/j.1365-313X.2005.02617.x pmid: 16441352
[34] 苏亚春. 甘蔗应答黑穗病菌侵染的转录组与蛋白组研究及抗性相关基因挖掘. 福建农林大学博士学位论文, 福建福州, 2014.
Su Y C. Transcriptome and Proteome of Sugarcane Response to Sporisorium scitamineum Infection and Mining of Resistance-related Genes. PhD Dissertation of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2014. (in Chinese with English abstract)
[35] Wang Q, Yu G, Chen Z, Han J, Hu Y, Wang K. Optimization of protoplast isolation, transformation and its application in sugarcane (Saccharum spontaneum L.). Crop J, 2021, 9: 133-142.
doi: 10.1016/j.cj.2020.05.006
[36] Shih C H, Chu H, Tang L K, Sakamoto W, Maekawa M, Chu I K, Wang M, Lo C. Functional characterization of key structural genes in rice flavonoid biosynthesis. Planta, 2008, 228: 1043-1054.
doi: 10.1007/s00425-008-0806-1 pmid: 18726614
[37] Ling H, Wu Q, Guo J, Xu L, Que Y. Comprehensive selection of reference genes for gene expression normalization in sugarcane by real time quantitative RT-PCR. PLoS One, 2014, 9: e97469.
doi: 10.1371/journal.pone.0097469
[38] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[39] Walker J M. The Proteomics Protocols Handbook. Totowa New Jersey: Humana Press, 2005. pp 31-175.
[40] Smolen G A, Pawlowski L, Wilensky S E, Bender J. Dominant alleles of the basic helix-loop-helix transcription factor ATR2 activate stress-responsive genes in Arabidopsis. Genetics, 2002, 161: 1235-1246.
doi: 10.1093/genetics/161.3.1235
[41] Murre C, Bain G, van Dijk M A, Engel I, Furnari B A, Massari M E, Matthews J R, Quong M W, Rivera R R, Stuiver M H. Structure and function of helix-loop-helix proteins. Biochim Biophys Acta, 1994, 1218: 129-135.
doi: 10.1016/0167-4781(94)90001-9 pmid: 8018712
[42] 周华, 朱祺, 杨艳芳, 刘洪伟, 余发新, 邱德有. 南方红豆杉bHLH基因克隆与序列分析. 植物研究, 2015, 35(1): 52-59.
doi: 10.7525/j.issn.1673-5102.2015.01.010
Zhou H, Zhu Q, Yang Y F, Liu H W, Yu F X, Qiu D Y. Cloning and sequence analysis of bHLH gene from Taxus chinensis var. mairei. Bull Bot Res, 2015, 35(1): 52-59. (in Chinese with English abstract)
[43] 王沛捷, 马艳红, 武小娟, 范菠菠, 赵娜勤. 紫色马铃薯bHLH转录因子家族基因的鉴定及表达分析. 基因组学与应用生物学, 2022, 41: 601-616.
Wang P J, Ma Y H, Wu X J, Fan B B, Zhao N Q. Identification and expression analysis of bHLH transcription factor family genes in purple potato. Genomics Appl Biol, 2021, 41: 601-616. (in Chinese with English abstract)
[44] 林延慧, 徐冉, 朱红林, 唐力琼, 侯本军, 徐靖. 大豆耐涝bHLH转录因子筛选及生物信息学分析. 大豆科学, 2021, 40: 319-326.
Lin Y H, Xu R, Zhu H L, Tang L Q, Hou B J, Xu J. Selection and bioinformatics analysis of bHLH transcription factor response to submergence stress in soybean. Soybean Sci, 2021, 40: 319-326. (in Chinese with English abstract)
[1] DU Cui-Cui, WU Ming-Xing, ZHANG Ya-Ting, XIE Wan-Jie, ZHANG Ji-Sen, WANG Heng-Bo. Cloning and functional analysis of sucrose transporter protein SsSWEET11 gene in sugarcane (Saccharum spontaneum L.) [J]. Acta Agronomica Sinica, 2023, 49(9): 2385-2397.
[2] HU Xin, LUO Zheng-Ying, LI Chun-Jia, WU Zhuan-Di, LI Xu-Juan, LIU Xin-Long. Comparative transcriptome analysis of elite ‘ROC’ sugarcane parents for exploring genes involved in Sporisorium scitamineum infection by using Illumina- and SMRT-based RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(9): 2412-2432.
[3] YU Quan-Xin, YANG Zong-Tao, ZHANG Hai, CHENG Guang-Yuan, ZHOU Ying-Shuan, JIAO Wen-Di, ZENG Kang, LUO Ting-Xu, HUANG Guo-Qiang, ZHANG Mu-Qing, XU Jing-Sheng. Interaction of sugarcane VAMP associated protein ScPVA12 with SCMV P3N-PIPO [J]. Acta Agronomica Sinica, 2023, 49(9): 2472-2484.
[4] PAN Jie-Ming, TIAN Shao-Rui, LIANG Yan-Lan, ZHU Yu-Lin, ZHOU Ding-Gang, QUE You-Xiong, LING Hui, HUANG Ning. Identification and expression analysis of PIN-LIKES gene family in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(2): 414-425.
[5] XIAO Jian, WEI Xing-Xuan, YANG Shang-Dong, LU Wen, TAN Hong-Wei. Effects of intercropping with watermelons on cane yields, soil physicochemical properties and micro-ecology in rhizospheres of sugarcanes [J]. Acta Agronomica Sinica, 2023, 49(2): 526-538.
[6] YANG Zong-Tao, JIAO Wen-Di, ZHANG Hai, ZHANG Ke-Ming, CHENG Guang-Yuan, LUO Ting-Xu, ZENG Kang, ZHOU Ying-Shuan, XU Jing-Sheng . Interaction of sugarcane glutathione S-transferase ScGSTF1 with P3N-PIPO in response to SCMV infection [J]. Acta Agronomica Sinica, 2023, 49(10): 2665-2676.
[7] SHEN Qing-Qing, WANG Tian-Ju, WANG Jun-Gang, ZHANG Shu-Zhen, ZHAO Xue-Ting, HE Li-Lian, LI Fu-Sheng. Functional identification of Saccharum spontaneum transcription factor SsWRKY1 to improve drought tolerance in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(10): 2654-2664.
[8] WANG Heng-Bo, ZHANG Chang, WU Ming-Xing, LI Xiang, JIANG Zhong-Li, LIN Rong-Xiao, GUO Jin-Long, QUE You-Xiong. Genome-wide identification of NAC transcription factors ATAF subfamily in Sacchrum spontaneum and functional analysis of its homologous gene ScNAC2 in sugarcane cultivar [J]. Acta Agronomica Sinica, 2023, 49(1): 46-61.
[9] LI Pei-Ting, ZHAO Zhen-Li, HUANG Chao-Hua, HUANG Guo-Qiang, XU Liang-Nian, DENG Zu-Hu, ZHANG Yu, ZHAO Xin-Wang. Analysis of drought responsive regulatory network in sugarcane based on transcriptome and WGCNA [J]. Acta Agronomica Sinica, 2022, 48(7): 1583-1600.
[10] LI Xu-Juan, LI Chun-Jia, WU Zhuan-Di, TIAN Chun-Yan, HU Xin, QIU Li-Hang, WU Jian-Ming, LIU Xin-Long. Expression characteristic and gene diversity analysis of ScHTD2 in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(7): 1601-1613.
[11] XIAO Jian, CHEN Si-Yu, SUN Yan, YANG Shang-Dong, TAN Hong-Wei. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications [J]. Acta Agronomica Sinica, 2022, 48(5): 1222-1234.
[12] ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026.
[13] KONG Chui-Bao, PANG Zi-Qin, ZHANG Cai-Fang, LIU Qiang, HU Chao-Hua, XIAO Yi-Jie, YUAN Zhao-Nian. Effects of arbuscular mycorrhizal fungi on sugarcane growth and nutrient- related gene co-expression network under different fertilization levels [J]. Acta Agronomica Sinica, 2022, 48(4): 860-872.
[14] YANG Zong-Tao, LIU Shu-Xian, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane ubiquitin-like protein UBL5 responses to SCMV infection and interacts with SCMV-6K2 [J]. Acta Agronomica Sinica, 2022, 48(2): 332-341.
[15] LIU Shu-Xian, YANG Zong-Tao, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Interaction of sugarcane main facilitator superfamily member ScZIFL1 with 6K2 in response to Sugarcane mosaic virus infection [J]. Acta Agronomica Sinica, 2022, 48(12): 3080-3090.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[2] Qi Zhixiang;Yang Youming;Zhang Cunhua;Xu Chunian;Zhai Zhixi. Cloning and Analysis of cDNA Related to the Genes of Secondary Wall Thickening of Cotton (Gossypium hirsutum L.) Fiber[J]. Acta Agron Sin, 2003, 29(06): 860 -866 .
[3] NI Da-Hu;YI Cheng-Xin;LI Li;WANG Xiu-Feng;ZHANG Yi;ZHAO Kai-Jun;WANG Chun-Lian;ZHANG Qi;WANG Wen-Xiang;YANG Jian-Bo. Developing Rice Lines Resistant to Bacterial Blight and Blast with Molecular Marker-Assisted Selection[J]. Acta Agron Sin, 2008, 34(01): 100 -105 .
[4] DAI Xiao-Jun;LIANG Man-Zhong;CHEN Liang-Bi. Comparison of rDNA Internal Transcribed Spacer Sequences in Oryza sativa L.[J]. Acta Agron Sin, 2007, 33(11): 1874 -1878 .
[5] WANG Bao-Hua;WU Yao-Ting;HUANG Nai-Tai;GUO Wang-Zhen;ZHU Xie-Fei;ZHANG Tian-Zhen. QTL Analysis of Epistatic Effects on Yield and Yield Component Traits for Elite Hybrid Derived-RILs in Upland Cotton[J]. Acta Agron Sin, 2007, 33(11): 1755 -1762 .
[6] WANG Chun-Mei;FENG Yi-Gao;ZHUANG Li-Fang;CAO Ya-Ping;QI Zeng-Jun;BIE Tong-De;CAO Ai-Zhong;CHEN Pei-Du. Screening of Chromosome-Specific Markers for Chromosome 1R of Secale cereale, 1V of Haynaldia villosa and 1Rk#1 of Roegneria kamoji[J]. Acta Agron Sin, 2007, 33(11): 1741 -1747 .
[7] Zhao Qinghua;Huang Jianhua;Yan Changjing. A STUDY ON THE POLLEN GERMINATION OF BRASSICA NAPUS L.[J]. Acta Agron Sin, 1986, (01): 15 -20 .
[8] ZHOU Lu-Ying;LI Xiang-Dong;WANG Li-Li;TANG Xiao;LIN Ying-Jie. Effects of Different Ca Applications on Physiological Characteristics, Yield and Quality in Peanut[J]. Acta Agron Sin, 2008, 34(05): 879 -885 .
[9] WANG Li-Xin; LI Yun-Fu; CHANG Li-Fang; HUANG Lan ;; LI Hong-Bo ; GE Ling-Ling; Liu Li-Hua ;; YAO Ji ;; ZHAO Chang-Ping ;. Method of ID Constitution for Wheat Cultivars[J]. Acta Agron Sin, 2007, 33(10): 1738 -1740 .
[10] ZHENG Tian-Qing;XU Jian-Long;FU Bing-Ying;GAO Yong-Ming;Satish VERUKA;Renee LAFITTE;ZHAI Hu-Qu;WAN Jian-Min;ZHU Ling-Hua;LI Zhi-Kang. Preliminary Identification of Genetic Overlaps between Sheath Blight Resistance and Drought Tolerance in the Introgression Lines from Directional Selection[J]. Acta Agron Sin, 2007, 33(08): 1380 -1384 .