欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (1): 11-17.doi: 10.3724/SP.J.1006.2009.00011

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

条锈菌诱导的小麦MBF1转录辅激活因子基因的克隆及其特征分析

张毅1;张岗1;董艳玲1;郭军1;黄丽丽1;康振生12*   

  1. 1西北农林科技大学植物保护学院,陕西杨凌 712100;2 西北农林科技大学陕西省农业分子生物学重点实验室,陕西杨凌 712100
  • 收稿日期:2008-06-23 修回日期:2008-07-09 出版日期:2009-01-12 网络出版日期:2008-11-17
  • 通讯作者: 康振生
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2006CB708208),国家高新技术研究发展计划(863计划)重大研究项目(2006AA10A104),教育部科学技术研究重点项目(107104),教育部长江学者和创新团队发展计划项目(IRT0558),国家自然科学基金项目(30671350),高等学校学科创新引智计划项目(B07049)资助。

Cloning and Characterization of a MBF1 Transcriptional Coactivator Factor in Wheat Induced by Stripe Rust Pathogen

  • Received:2008-06-23 Revised:2008-07-09 Published:2009-01-12 Published online:2008-11-17
  • Contact: KANG Zhen-Sheng

摘要:

应用电子克隆和RT-PCR方法,从小麦叶片中分离出一个条锈菌诱导的编码MBF1基因的cDNA序列,暂被命名为TaMBF1aTaMBF1a包含一个完整的429 bp的开放阅读框,编码142个氨基酸,具有MBF1保守结构域;小麦TaMBF1a氨基酸序列与水稻OsMBF1相似性达92%,与拟南芥AtMBF1a相似性达80%TaMBF1a编码的蛋白可能是核蛋白,且该基因在小麦根、茎、叶组织中表达量基本一致。在小麦与条锈菌的亲和、非亲和互作中,TaMBF1a基因均受条锈菌诱导高水平表达,且非亲和组合表达量高于亲和组合。外源植物激素水杨酸、乙烯、脱落酸也可诱导该基因快速上调表达,表明TaMBF1a可能通过水杨酸、乙烯等信号途径参与小麦对条锈菌的防御反应。

关键词: 条锈菌, 小麦, MBF1转录辅激活因子, 电子克隆, 基因表达

Abstract:

To better understand wheat (Triticum aestivum L.) defense responses to Puccinia striiformis f. sp. tritici, the compatible interaction cDNA library of wheat leaves infected by Puccinia striiformis f. sp. tritici is constructed in our laboratory. A total of 594 genes have been identified and 399 genes have been annotated. On the basis of previous study, a new MBF1 gene was isolated from this cDNA library through in silico cloning and RT-PCR approaches. The gene was tentatively designated as TaMBF1a, whose open reading frame was 429 bp in length and encoded 142 amino acids containing a conserved MBF1 transcription activation domain. The amino acid sequence of TaMBF1a shares 92% identify with OsMBF1 in rice and 80% identify with AtMBF1a in Arabidopsis thaliana. The expression of TaMBF1a gene was at a similar level in leaves, stems, and roots. TaMBF1a protein is possibly a nuclear protein in wheat. The expression patterns results revealed that TaMBF1a was up-regulated in both compatible and incompatible interactions. However, the expression in incompatible interaction was higher than that in compatible interaction. The expression of TaMBF1a was also induced by salicylic acid (SA), ethylene, and abscisic acid (ABA), suggesting that the SA and ethylene pathways might be involved in regulating the host defence responses.

Key words: Stripe rust fungus, Wheat, Multiprotein bridging factor 1(MBF1), In silico cloning, Gene expression

[1]Chen X M. Epidemiology and control of stripe rust (Puccinia striiformis f. sp. tritici) on wheat. Can J Plant Pathol, 2005, 27: 314–337

[2]Takeman K, Li F Q, Ueda H, Hirose S. Multiprotein bridging factor 1 is an evolutionarily conserved transcriptional coactivator that connects a regulatory factor and TATA element-binging protein. Proc Natl Acad Sci USA, 1997, 94: 7251–7256

[3]Brendel C, Gelman L, Auwerx J. Multiprotein bridging factor 1 is a cofactor for nuclear receptors that regulate lipid metabolish. Mol Endocrinol, 2002, 16: 1367–1377

[4]Goday A V, Zanetti M E, San Segundo B, Casalongue C A. Identification of a putative Solanum tuberosum transcriptional coativator up-regulated in potato tubers by Fasarium solanif sp. eumartii infection and wounding. Physiol Plant, 2001, 112: 217–272

[5]Rizhsky L, Liang H J, Mittler R. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol, 2002, 130: 1143–1151

[6]Suznki N, Rizhsky L, Liang H J. Shuman J, Shulaev V, Mittler R. Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coativator multiprotein bridging factor 1c. Plant Physiol, 2005, 139: 1313–1322

[7]Harashima H S, Ueda S, Hirose S. Mediators of activation of fushi tarazu gene transcription by BmFTZ-FI. Exp Cell Res, 2003, 286: 102–114

[8]Kim M J, Lim G H, Kim E S, Ko C B, Yang K Y, Jeong J A, Lee M C, Kim C S. Abiotic and biotic stress tolerance in Arabidopsis overexpressing the multiprotein bridging factor 1a (MBF1a) transcriptional coactivator gene. Biochem Biophys Res Commun, 2007, 354: 440–446

[9]Ma J-B(马金彪), Wang X-J(王晓杰), Yu X-M(于秀梅), Xu L-S(徐亮胜), Han Q-M(韩青梅), Huang L-L(黄丽丽), Kang Z-S(康振生). Construction of cDNA library from wheat leaves chanllenged by Puccinia striiformis and analysis of expressed sequence tags. Acta Phytopathol Sin (植物病理学报), 2007, 37(3): 50–55 (in Chinese with English abstract)

[10]Kang Z-S(康振生), Li Z-Q(李振岐). Discovery of pathogenic isolates of stripe rust on cultivar Lovrin 10 at normal temperature. J Northwest Agric Coll (西北农学院学报), 1984, 12(4): 18–28 (in Chinese with English abstract)

[11]Zhang H B, Zhang D B, Chan J, Yang Y H, Huang Z J, Huang D F, Wang X C, Huang R F. Tomato stress responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralatonia solanacearum. Plant Mol Biol, 2004, 55: 825–834

[12]Okubara P A, Blechl A E, McCormick S P, Alexander N J, Dill-Macky R, Hohn T M. Engineering deoxynivalenol metabolism in wheat through the expression of a fungal trichothecene acetyltransferase gene. Theor Appl Genet, 2002, 106: 74–83

[13]Zhang D-L(张德礼), Sun X-J(孙晓静), Ling L-J(凌伦奖), Chen R-S(陈润生), Ma D-L(马大龙). Molecular cloning, characterization, chromosomal assignment, genomic organization and verification of SFRS12 (SRrp508), a novel member of human SR protein superfamily and a human homolog of rat SRrp86. Acta Genet Sin (遗传学报), 2002, 29(5): 377–383 (in Chinese with English abstract)

[14]Wu H-L(吴华玲), Ni Z-F(倪中福), Yao Y-Y(姚颖垠), Guo G-G(郭刚刚), Sun Q-X(孙其信). Cloning and expression profiles of 15 genes encoding WRKY transcription factor in wheat (Triticum aestivum L.). Prog Nat Sci (自然科学进展), 2008, 18(4): 697–705 (in Chinese)

[15]Han W L, Ding P G, Xu M X, Wang L, Rui M, Shi S, Liu Y N, Zheng Y, Chen Y Y, Yang T, Ma D L. Identification of eight genes encoding chemokine-like factor superfamily members 1-8 (CKLFSF1-8) by in silico cloning and experimental validation. Genomics, 2003, 81: 609–617

[16]Liu Q X, Ueda H, Hirose S. MBF2 is a tissue-and stage-specific coactivator that is regulated at the step of nuclear transport in the silkworm Bombyx mori. Dev Biol, 2002, 225: 437–446

[17]Sugikawa Y, Ebihara S, Tsuda K, Niwa Y, Yamazak K. Transcriptional coactivator MBF1s from Arabidopsis predominantly localize in nucleolus. J Plant Res, 2005, 118: 431–437

[18]Tsuda K, Yamazaki K. Structure and expression analysis of three subtypes of Arabidopsis MBF1 genes. Biochim Biophys Acta, 2004, 1680: 1–10

[19]Zanetti M E, Blanco F A, Daleo G R, Casalongue C A. Phosphorylation of a member of the MBF1 transcriptional co-activator family, StMBF1, is stimulated in potato cell suspensions upon fungal elicitor challenge. J Exp Bot, 2003, 383: 623–632

[20]Matsushita Y, Miyakawa O, Deguchi M, Masakazu D, Nishiguchi M, Nyunoya H. Cloning of a tobacco cDNA coding for a transcriptional coactivator MBF1 that interacts with the tomato mosaic virus movement protein. J Exp Bot, 2002, 53: 1531–1532

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[4] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[5] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[6] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[7] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[8] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[11] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[12] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[13] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[14] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[15] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!