欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (2): 310-315.doi: 10.3724/SP.J.1006.2019.83034

• 研究简报 • 上一篇    下一篇

不同玉米杂交品种吐丝持续期特性及其对播期的响应

刘月娥,吕天放,赵久然(),王荣焕(),徐田军,陈传永,张译天,王元东,刘秀芝   

  1. 北京市农林科学院玉米研究中心 / 玉米DNA指纹及分子育种北京市重点实验室, 北京100097
  • 收稿日期:2018-04-18 接受日期:2018-10-08 出版日期:2019-02-12 发布日期:2018-11-05
  • 通讯作者: 赵久然,王荣焕 E-mail:maizezhao@126.com;ronghuanwang@126.com
  • 基金资助:
    本研究由国家重点研发计划项目(2016YFD0300106);本研究由国家重点研发计划项目(2017YFD0101104);国家自然科学基金项目(31601247);国家现代农业产业技术体系专项(CARS-02-11);北京市农林科学院青年科研基金项目(QNJJ201728);北京市农林科学院院级科技创新团队建设项目资助(JNKYT201603)

Silking duration characteristics in different maize hybrids and its response to sowing date

Yue-E LIU,Tian-Fang LYU,Jiu-Ran ZHAO(),Rong-Huan WANG(),Tian-Jun XU,Chuan-Yong CHEN,Yi-Tian ZHANG,Yuan-Dong WANG,Xiu-Zhi LIU   

  1. Maize Research Center, Beijing Academy of Agriculture & Forestry Sciences / Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097, China
  • Received:2018-04-18 Accepted:2018-10-08 Online:2019-02-12 Published:2018-11-05
  • Contact: Jiu-Ran ZHAO,Rong-Huan WANG E-mail:maizezhao@126.com;ronghuanwang@126.com
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2016YFD0300106);This study was supported by the National Key Research and Development Program of China(2017YFD0101104);the National Natural Science Foundation of China(31601247);the China Agriculture Research System(CARS-02-11);the Youth Research Fund of the Beijing Academy of Agriculture and Forestry Sciences(QNJJ201728);and the Innovative Team Construction Project of BAAFS(JNKYT201603)

摘要:

吐丝期是决定玉米产量的关键时期, 研究其相关特性, 对玉米生产意义重大。为准确分析不同玉米品种吐丝特性的差异及其对播期的响应, 于2014年和2015年设置了3个玉米主推品种(郑单958、先玉335和京科968)的3个播期处理(早播: 4月10日, 中播: 5月10日, 晚播: 6月10日), 分析了各个处理间吐丝持续期的差异以及吐丝持续期与雌穗穗长变异及产量构成因素的关系。结果表明: (1)群体吐丝持续期在品种间存在显著差异, 表现为先玉335 (9.12 d) >郑单958 (8.94 d) >京科968 (7.68 d)。随时间推进, 玉米每天吐丝的比例与天数为先升高后降低的二次函数关系, 每天最大吐丝比例为先玉335 (16.51%)<郑单958 (17.07%)<京科968 (19.98%)。京科968较郑单958和先玉335呈现吐丝集中, 每天吐丝比例较高、吐丝持续期短的特点; (2)吐丝持续期在不同播期间差异显著, 郑单958、先玉335和京科968不同播期间的吐丝持续期变幅分别为8.10~9.55 d、7.54~10.53 d和6.65~8.66 d, 郑单958的吐丝持续期在不同播期间最稳定(CV=6.57%), 其次为京科968 (CV=9.40%), 先玉335的吐丝持续期在不同播期间的变化最不稳定(CV=11.68%); (3)吐丝持续期与雌穗穗长的变异系数呈显著正相关, 与产量和穗粒数呈显著负相关, 与千粒重不相关。播期对玉米吐丝持续期具有显著的调控作用。随吐丝持续期增加, 玉米雌穗穗长的变异系数显著增大, 群体果穗的整齐度降低, 穗粒数显著减少, 是玉米产量显著降低的主要原因。

关键词: 玉米, 品种, 吐丝持续期, 播期, 产量

Abstract:

Silking is an important growth stage and has important effects on maize (Zea mays L.) yield. The research of silking characteristics plays a fundamental role in maize productivity. To examine the silking characteristics difference of different maize hybrids and its responses to sowing date, we conducted an experiment with three sowing date (4/10, 5/10, 6/10) treatments using the most widely cultivated maize hybrids of Zhengdan 958 (ZD958), Xianyu 335 (XY335), and Jingke 968 (JK968). The silking duration difference between different hybrids and the relationship of silking duration with ear length variation and yield components were analyzed. The significant differences were found in silking durations with an order of XY335 (9.12 d) > ZD958 (8.94 d) > JK968 (7.68 d). The silking ratio per day was well correlated with days to silking (P < 0.05), A non-linear positive relationship existed between silking ratio per day (y) and days to silking (x). The highest silking ratio per day showed an order of XY335 (16.51%) < ZD958 (17.07%) < JK968 (19.98%). Significant differences of silking duration were found between different sowing date treatments. The silking durations of ZD958, XY335, and JK968 in different sowing date treatment ranged from 8.10 d to 9.55 d (CV = 6.57%), from 7.54 d to 10.53 d (CV = 9.40%), from 6.55 d to 8.66 d (CV = 11.68%), respectively. Silking duration significantly and positively correlated the coefficient of variation of ear length, and negatively correlated with yield and kernel number per ear. No significant correlation was found between silking duration and 1000-kernel weight. Sowing date has significant effects on silking duration. With increasing silking duration , the coefficient of variation of ear length is increased significantly, the uniformity of ear length and kernel number per ear are decreased, resulting in maize yield decrease significantly.

Key words: maize, hybrid, silking duration, sowing date, yield

图1

不同玉米品种每天吐丝比例的变化 **和*表示在0.01和0.05水平显著相关。"

表1

不同玉米品种的吐丝持续期"

品种
Hybrid
2014 2015 平均值
Average (d)
变异系数
Coefficient of variation (%)
May 10 June 10 April 10 May 10 June 10
郑单958 Zhengdan 958 9.23 8.10 9.24 9.55 8.59 8.94 a 6.57
先玉335 Xianyu 335 7.54 9.02 9.25 10.53 9.25 9.12 a 11.68
京科968 Jingke 968 6.65 7.54 7.67 8.66 7.89 7.68 b 9.40

表2

不同玉米品种抽雄吐丝日期及抽雄吐丝间隔"

年份
Year
播期
Sowing date
(month/day)
品种
Cultivar
抽雄日期
Tasseling date
(month/day)
吐丝日期
Silking date
(month/day)
抽雄吐丝间隔
Interval between tasseling and silking (d)
2014 5/10 郑单958 Zhengdan 958 7/8 7/9 1
先玉335 Xianyu 335 7/10 7/8 2
京科968 Jingke 968 7/10 7/11 1
6/10 郑单958 Zhengdan 958 8/3 8/5 2
先玉335 Xianyu 335 8/4 8/5 1
京科968 Jingke 968 8/6 8/8 2
2015 4/10 郑单958 Zhengdan 958 6/22 6/26 4
先玉335 Xianyu 335 6/23 6/25 2
京科968 Jingke 968 6/23 6/27 4
5/10 郑单958 Zhengdan 958 7/10 7/12 2
先玉335 Xianyu 335 7/9 7/11 2
京科968 Jingke 968 7/12 7/14 2
6/10 郑单958 Zhengdan 958 8/4 8/6 2
先玉335 Xianyu 335 8/5 8/6 1
京科968 Jingke 968 8/3 8/5 2

图2

玉米吐丝持续期与雌穗穗长变异的相关分析 ** 和*表示在0.01和0.05水平显著相关。"

图3

玉米吐丝持续期与产量构成因素的相关分析 **和*表示在0.01和0.05水平显著相关。"

[1] Borrás L, Westgate M E, Astini J P, Echarte L E . Coupling time to silking with plant growth rate in maize. Field Crops Res, 2007,102:73-85.
doi: 10.1016/j.fcr.2007.02.003
[2] Gabaldon L C, Webber H, Otegui M E, Slafer G A, Ordonez R A, Gaiser T, Lorite I J, Ruiz R M, Ewert F . Modelling the impact of heat stress on maize yield formation. Field Crops Res, 2016,198:226-237.
doi: 10.1016/j.fcr.2016.08.013
[3] Liu G, Hou P, Xie R, Ming B, Wang K, Liu W, Yang Y, Li S . Canopy characteristics of high-yield maize with yield potential of 22.5 Mg ha -1 . Field Crops Res, 2017,213:221-230.
doi: 10.1016/j.fcr.2017.08.011
[4] Paponov I A, Sambo P, Erley G S, Presterl T, Geiger H H, Engels C . Kernel set in maize genotypes differing in nitrogen use efficiency in response to resource availability around flowering. Plant Soil, 2005,272:101-110.
doi: 10.1007/s11104-004-4210-8
[5] Jia S F, Li C F . Effects of shading at different stages after anthesis on maize grain weight and quality at cytology level. J Integr Agric, 2011,10:58-69.
doi: 10.1016/S1671-2927(11)60307-6
[6] 张仁和, 郭东伟, 张兴华, 海东, 刘建超, 李凤艳, 郝引川, 薛吉全 . 吐丝期干旱胁迫对玉米生理特性和物质生产的影响. 作物学报, 2012,38:1884-1890.
doi: 10.3724/SP.J.1006.2012.01884
Zhang R H, Guo D W, Zhang X H, Lu H D, Liu J C, Li F Y, Hao Y C, Xue J Q . Effect of drought stress on physiological characteristics and dry matter production in maize silking stage. Acta Agron Sin, 2012,38:1884-1890 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2012.01884
[7] 陈春梅, 高聚林, 苏治军, 于晓芳, 胡树平, 赵晓亮 . 玉米自交系吐丝期叶片光合参数与其耐旱性的关系. 作物学报, 2014,40:1667-1676.
doi: 10.3724/SP.J.1006.2014.01667
Chen C M, Gao J L, Su Z J, Yu X F, Hu S P, Zhao X L . Relationship between leaf photosynthetic parameters and drought resistance at silking stage in maize inbred lines. Acta Agron Sin, 2014,40:1667-1676 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.01667
[8] Ren B, Cui H, Camberato J J, Dong S, Liu P, Zhao B, Zhang J . Effects of shading on the photosynthetic characteristics and mesophyll cell ultrastructure of summer maize. Naturwissenschaften, 2016,103:67.
doi: 10.1007/s00114-016-1392-x pmid: 27437706
[9] Beavis W D, Smith O S, Grant D, Fincher R R . Identification of quantitative trait loci using a small sample of top crossed and F4 progeny from maize. Crop Sci, 1994,34:882-896.
doi: 10.2135/cropsci1994.0011183X003400040010x
[10] Veldboom L R, Lee M . Molecular-marker-facilitated studies of morphological traits in maize. II: Determination of QTLs for grain yield and yield components. Theor Appl Genet, 1994,89:451-458.
doi: 10.1007/BF00225380 pmid: 24177894
[11] Berke T G, Rocheford T R . Quantitative trait loci for flowering, plant and ear height, and kernel traits in maize. Crop Sci, 1995,35:1542-1549.
doi: 10.2135/cropsci1995.0011183X003500060004x
[12] Agrama H A S, Moussa M E . Mapping QTLs in breeding for drought tolerance in maize (Zea mays L.). Euphytica, 1996,91:89-97.
doi: 10.1007/BF00035278
[13] Kozumplik V, Pejic I, Senior L, Pavlina R, Graham G I, Stuber C W . Use of molecular markers for QTL detection in segregating maize populations derived from exotic germplasm. Maydica, 1996,41:211-217.
[14] Ribaut J, Hoisington D, Deutsch J A, Jiang C Z, Gonzalez de Leon D . Identification of quantitative trait loci under drought conditions in tropical maize: 1. Flowering parameters and the anthesis-silking interval. Theor Appl Genet, 1996,92:905-914.
doi: 10.1007/BF00221905 pmid: 24166558
[15] Veldboom L R, Lee M . Genetic mapping of qunatitative trait loci in maize in stress and nonstress environments: II. Plant height and flowering. Crop Sci, 1996,36:1320-1327.
doi: 10.2135/cropsci1996.0011183X003600050041x
[16] Rebai A, Blanchard P, Perret D, Vincourt P . Mapping quantitative trait loci controlling silking date in a diallel cross among four lines of maize. Theor Appl Genet, 1997,95:451-459.
doi: 10.1007/s001220050582
[17] Khairallah M, Bohn M, Jiang C Z, Deutsch J A, Jewell D C, Mihm J A, Melchinger A E, Gonzalez de Leon D, Hoisington D . Molecular mapping of QTL for southwestern corn borer resistance, plant height and flowering in tropical maize. Plant Breed, 1998,117:309-318.
doi: 10.1111/j.1439-0523.1998.tb01947.x
[18] Xie H, Ding D, Cui Z, Wu X, Hu Y, Liu Z, Li Y, Tang J . Genetic analysis of the related traits of flowering and silk for hybrid seed production in maize. Genes Genomics, 2010,32:55-61.
doi: 10.1007/s13258-010-0801-3
[19] Wang Y, Cui Y, Zhang L, Li J, Liu J, Wang R . Effects of syncrhonization between silk receptivity and pollen grain vigor on kernel sets of corn (Zea mays L.). Front Agric China, 2007,1:271-275.
doi: 10.1007/s11703-007-0046-3
[20] 李金才, 董海荣, 崔彦宏 . 不同花位间玉米花丝生长发育动态的研究. 河北农业大学学报, 2003,26(2):1-4.
doi: 10.3969/j.issn.1000-1573.2003.02.001
Li J C, Dong H R, Cui Y H . Study on the dynamics of growth and development of maize silks in different flower positions. J Agric Univ Hebei, 2003,26(2):1-4 (in Chinese with English abstract).
doi: 10.3969/j.issn.1000-1573.2003.02.001
[1] 高超,李学文,孙艳伟,周婷,罗纲,陈财. 淮河流域夏玉米生育阶段需水量及农业干旱时空特征[J]. 作物学报, 2019, 45(2): 297-309.
[2] 陈玉章,柴守玺,程宏波,柴雨葳,杨长刚,谭凯敏,常磊. 秸秆还田结合秋覆膜对旱地冬小麦耗水特性和产量的影响[J]. 作物学报, 2019, 45(2): 256-266.
[3] 杨宇昕,桑志勤,许诚,代文双,邹枨. 利用WGCNA进行玉米花期基因共表达模块鉴定[J]. 作物学报, 2019, 45(2): 161-174.
[4] 卢媛,艾为大,韩晴,王义发,李宏杨,瞿玉玑,施标,沈雪芳. 糯玉米自交系SSR标记遗传多样性及群体遗传结构分析[J]. 作物学报, 2019, 45(2): 214-224.
[5] 李成江,李大肥,周桂夙,许龙,徐天养,赵正雄. 不同种类生物炭对植烟土壤微生物及根茎病害发生的影响[J]. 作物学报, 2019, 45(2): 289-296.
[6] 牟碧涛,赵卓凡,岳灵,李川,张钧,李章波,申汉,曹墨菊. 两份玉米CMS-C恢复系的育性恢复力测定及恢复基因的分子标记定位[J]. 作物学报, 2019, 45(2): 225-234.
[7] 陈四龙,程增书,宋亚辉,王瑾,刘义杰,张朋娟,李玉荣. 高产高油花生品种的光合与物质生产特征[J]. 作物学报, 2019, 45(2): 276-288.
[8] 许阳东,朱宽宇,章星传,王志琴,杨建昌. 绿色超级稻品种的农艺与生理性状分析[J]. 作物学报, 2019, 45(1): 70-80.
[9] 刘妍,刘兆新,何美娟,刘婷如,杨坚群,甄晓宇,栗鑫鑫,李向东,杨东清. 冬闲期耕作方式对连作花生叶片衰老和产量的影响[J]. 作物学报, 2019, 45(1): 131-143.
[10] 凌霄霞, 张作林, 翟景秋, 叶树春, 黄见良. 气候变化对中国水稻生产的影响研究进展[J]. 作物学报, 2019, 45(03): 323-334.
[11] 孙凯, 刘振, 胡恒宇, 李耕, 刘文涛, 杨柳, 宁堂原, 王彦玲. 有机培肥与轮耕方式对夏玉米田土壤碳氮和产量的影响[J]. 作物学报, 2019, 45(03): 401-410.
[12] 唐会会, 许艳丽, 王庆燕, 马正波, 李光彦, 董会, 董志强. 聚天门冬氨酸螯合氮肥减量基施对东北春玉米的增效机制[J]. 作物学报, 2019, 45(03): 431-442.
[13] 李红丹,闫蕾,孙蕾,樊晓聪,陈士瞻,张燕,郭林,游光霞,李庄,杨宗举,苏亮,杨建平. 玉米隐花色素CRY1bCRY2基因转录丰度对不同光质处理的响应[J]. 作物学报, 2018, 44(9): 1290-1300.
[14] 樊廷录,王淑英,续创业,李尚中,王甲玺,王克如,赵刚,程万莉,张建军,王磊,党翼. 黄土高原旱作玉米籽粒水分与机械粒收质量的关系[J]. 作物学报, 2018, 44(9): 1411-1429.
[15] 刘忠祥,杨梅,殷鹏程,周玉乾,何海军,邱法展. 玉米株高主效QTL qPH3.2精细定位及遗传效应分析[J]. 作物学报, 2018, 44(9): 1357-1366.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[2] 何名召;王丽敏;张增艳;徐世昌;王丽丽;辛志勇. 硬粒小麦-粗山羊草人工合成小麦CI108抗条锈病新基因的鉴定、基因推导与分子标记定位[J]. 作物学报, 2007, 33(07): 1045 -1050 .
[3] 徐爱遐;马朝芝;肖恩时;权景春;马长珍;田广文;涂金星;傅廷栋;张改生. 中国西部芥菜型油菜遗传多样性研究[J]. 作物学报, 2008, 34(05): 754 -763 .
[4] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[5] 王逸群. 根瘤菌对水稻的感染[J]. 作物学报, 2002, 28(01): 32 -35 .
[6] 许耀奎. 化学诱变剂EMS对春小麦诱变效应的研究[J]. 作物学报, 1985, 11(03): 215 -216 .
[7] 许珂;曹墨菊;朱英国;潘光堂;荣廷昭. 玉米C型细胞质雄性不育系C48-2及其保持系线粒体差异蛋白分析[J]. 作物学报, 2008, 34(02): 232 -237 .
[8] 韩庚辰. 玉米主要光合性状与产量的关系及遗传效应分析[J]. 作物学报, 1982, 8(04): 237 -244 .
[9] 刘庆昌;王晶珊;国分祯二;佐藤宗治. 甘薯(Ipomoea batatas (L.) Lam.)及其近缘野生种原生质体的植株再生[J]. 作物学报, 1995, 21(01): 25 -28 .
[10] 王宏炜;史亚琪;黄峰;袁琳. HgCl2短时处理对蚕豆叶片光合作用的效应[J]. 作物学报, 2008, 34(01): 157 -162 .