欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (4): 614-630.doi: 10.3724/SP.J.1006.2020.93034

• 耕作栽培·生理生化 • 上一篇    下一篇

密度和株行距配置对川中丘区夏玉米群体光分布及雌雄穗分化的影响

金容1,2,李钟2,杨云2,周芳1,杜伦静1,李小龙1,孔凡磊1,袁继超1,*()   

  1. 1 四川农业大学农学院 / 作物生理生态及栽培四川省重点实验室, 四川成都 611130
    2 南充市农业科学院, 四川南充 637000
  • 收稿日期:2019-06-12 接受日期:2019-09-26 出版日期:2020-04-12 发布日期:2019-10-14
  • 通讯作者: 袁继超 E-mail:yuanjichao5@163.com
  • 作者简介:E-mail: 1256100416@qq.com
  • 基金资助:
    本研究由国家公益性行业(农业)科研专项经费(20150312705);国家重点研发计划项目(玉米密植机收)(2016YFD0300307);国家重点研发计划项目(资源高效模式)资助(2016YFD0300209)

Effects of density and row spacing on population light distribution and male and female spike differentiation of summer maize in hilly area of central Sichuan

JIN Rong1,2,LI Zhong2,YANG Yun2,ZHOU Fang1,DU Lun-Jing1,LI Xiao-Long1,KONG Fan-Lei1,YUAN Ji-Chao1,*()   

  1. 1 College Agronomy of Sichuan Agricultural University / Key Laboratory of Crop Physiology and Ecology and Cultivation of Sichuan Province, Chengdu 611130, Sichuan, China
    2 Nanchong Academy of Agricultural Sciences, Nanchong 637000, Sichuan, China
  • Received:2019-06-12 Accepted:2019-09-26 Online:2020-04-12 Published:2019-10-14
  • Contact: Ji-Chao YUAN E-mail:yuanjichao5@163.com
  • Supported by:
    This study was supported by the Special Fund for Agro-scientific Research in the Public Interest(20150312705);the National Key Research and Developing Program of China (Dense Planting and Machine Harvesting)(2016YFD0300307);the National Key Research and Developing Program (China-Resource Efficient Mode)(2016YFD0300209)

摘要:

为了便于全程机械化生产, 四川中部部分地区玉米生产已逐渐由套作春播转变为净作夏播。为了明确本区域净作夏玉米高产、宜机的群体结构, 采用两因素裂区试验设计, 研究了种植密度和株行距配置对夏玉米群体光分布及雌雄穗分化和产量的影响。结果表明, 随种植密度增加, 玉米有效穗数增加, 但因空秆和倒伏增加导致有效穗数增幅逐渐减少甚至最终降低; 密度增加使玉米叶片茎叶夹角和开张角降低, 叶向值增加, 群体透光率明显降低, 消光系数增大, 雌雄穗小穗分化期和小花分化期幼穗长度和中部直径、吐丝期雄穗主轴长度和成对小穗数以及雌穗总小花数、吐丝小花数、受精小花数和单株果穗受精率均降低, 而退化小花数、败育花数和花败育率均增加, 最终导致玉米秃尖变长, 穗粒数和百粒重显著降低。产量随种植密度增加而先增后降, 以67,500株 hm -2最高, 2年平均较45,000株 hm -2和90,000株 hm -2密度分别显著增加17.00%和14.03%。此外, 2年在45,000株 hm -2和67,500株 hm -2密度下, 等行距均优于相应宽窄行, 60 cm等行距处理下玉米株型紧凑, 能改善群体受光条件, 提高玉米单株果穗受精率, 降低小花败育率, 籽粒产量较高; 在2018年90,000株 hm -2密度下, (110+50) cm宽窄行处理更能改善田间通风透光条件, 促进雌雄穗分化, 提高玉米籽粒产量。因此, 川中丘区夏玉米高产栽培应适当缩行增密, 宜采用67,500株 hm -2密度搭配60 cm等行距种植。

关键词: 密度, 株行距配置, 玉米, 叶型, 光合有效辐射, 雌雄穗, 产量构成

Abstract:

In order to facilitate mechanical production, the corn production in parts of central Sichuan has gradually changed from the intercropping spring planting to the net summer planting. In order to clarify the population structure of the net summer maize for high yield and suitable for mechanization in the region, the effects of density and row spacing on population light distribution and male and female spike differentiation of summer maize were studied with two-factor splitting test design. With the increase of planting density, the maize effective panicle increased, with a gradually decreased increase range, and finally decreased due to the increase of empty stalk and lodging. With the density increased, the angle between stem and leaf and the opening angle decreased, the leaf orientation value increased, the group transmittance decreased significantly, the extinction coefficient increased, and the spike length and middle diameter of the male and female spikes at the panicle differentiation and floret differentiation stages, the tassel spindle length and pairs spikelet number at the silking stage, as well as the total small flower number, the silking floret number, the fertilized floret number and the fertilization rate per plant decreased, while the degraded floret number, the abortive flower number and the abortion rate increased, which eventually led maize bald ear tip become longer, the grain number per panicle and 100-grain weight decreased significantly. With the increase of planting density, the yield increased first and then decreased, with the highest yield under 67,500 plants hm -2. For the average yield of two years, the treatment of 67,500 plants hm -2 had a significant increase of 17.00% and 14.03% compared with the treatments of 45,000 and 90,000 plants hm -2, respectively. In addition, under the density of 45,000 and 67,500 plants hm -2 for two years, the equal row spacing was better than the corresponding wide and narrow rows, and the maize plant type was compact in 60 cm row spacing treatment, which improved group light conditions and fertilization rate per plant, reduced small flower abortion rate, and increased maize yield. Under the density of 90,000 plants hm -2 in 2018, (110+50) cm wide and narrow treatment improved the ventilation and light transmission conditions in the field, promoted the differentiation of female and male ears, and increased the maize yield. Therefore, the high-yield cultivation of summer maize in the central Sichuan area should be performed by properly reducing row spacing and increasing plant density, which are suggested as (60+60) cm and 67,500 plants hm -2 respectively.

Key words: density, row spacing, maize, leaf type, photosynthetically active radiation, male and female spike, yield composition

图1

玉米生育期间气温和降水量"

图2

密度和株行距配置对玉米叶片着生状态的影响 柱上不同小写字母表示处理间差异显著(P < 0.05); A1、A2和A3代表种植密度分别为45,000、67,500和90,000株 hm-2; B1、B2、B3、B4和B5代表行距配置分别为(60+60)、(80+40)、(80+80)、(110+50)和(100+100) cm; Above、Ear和Under分别代表穗上第1叶、穗位叶和穗下第1叶。"

图3

密度和株行距配置对玉米群体透光率的影响 A1、A2和A3代表种植密度分别为45,000、67,500和90,000株 hm-2; B2-narrow、B4-narrow、B1-equal、B3-equal、B2-wide、B4-wide和B5-equal分别代表40、50、60、80、80、110和100 cm的行距。"

表1

不同密度和行距配置下玉米群体消光系数方程[(ln(I/I0) = kh+a)]"

年份
Year
密度
Density
行距
Row spacing
消光系数方程
Logarithmic function
R2
2017 A1 B1-等 B1-equal ln(I/I0) = 0.0090h +2.5523 0.9696**
B2-宽 B2-wide ln(I/I0) = 0.0047h +3.5541 0.9531**
B2-窄 B2-narrow ln(I/I0) = 0.0106h +2.0671 0.9791**
B3-等 B3-equal ln(I/I0) = 0.0059h +3.2565 0.9735**
B4-宽 B4-wide ln(I/I0) = 0.0041h +3.7290 0.9239**
B4-窄 B4-narrow ln(I/I0) = 0.0102h +2.2405 0.9767**
B5-等 B5-equal ln(I/I0) = 0.0046h +3.6143 0.9384**
A2 B1-等 B1-equal ln(I/I0) = 0.0103h +2.1728 0.9674**
B2-宽 B2-wide ln(I/I0) = 0.0073h +2.8467 0.9763**
B2-窄 B2-narrow ln(I/I0) = 0.0122h +1.6108 0.9926**
B3-等 B3-equal ln(I/I0) = 0.0076h +2.7509 0.9598**
B4-宽 B4-wide ln(I/I0) = 0.0056h +3.3087 0.9575**
B4-窄 B4-narrow ln(I/I0) = 0.0112h +1.9446 0.9674**
B5-等 B5-equal ln(I/I0) = 0.0061h +3.1839 0.9775**
2018 A1 B1-等 B1-equal ln(I/I0) = 0.0077h +2.6975 0.9640**
B2-宽 B2-wide ln(I/I0) = 0.0061h +3.0639 0.9576**
B2-窄 B2-narrow ln(I/I0) = 0.0088h +2.2892 0.9760**
B3-等 B3-equal ln(I/I0) = 0.0071h +2.8679 0.9554**
B4-宽 B4-wide ln(I/I0) = 0.0056h +3.3071 0.9567**
B4-窄 B4-narrow ln(I/I0) = 0.0083h +2.5240 0.9855**
A2 B1-等 B1-equal ln(I/I0) = 0.0087h +2.2735 0.9735**
B2-宽 B2-wide ln(I/I0) = 0.0078h +2.5173 0.9739**
B2-窄 B2-narrow ln(I/I0) = 0.0091h+2.1131 0.9645**
B3-等 B3-equal ln(I/I0) = 0.0079h +2.5433 0.9878**
B4-宽 B4-wide ln(I/I0) = 0.0077h +2.8264 0.9424**
B4-窄 B4-narrow ln(I/I0) = 0.0088h +2.2422 0.9789**
A3 B1-等 B1-equal ln(I/I0) = 0.0108h +1.7759 0.9797**
B2-宽 B2-wide ln(I/I0) = 0.0102h +1.9959 0.9763**
B2-窄 B2-narrow ln(I/I0) = 0.0116h +1.4354 0.9661**
B3-等 B3-equal ln(I/I0) = 0.0104h +1.9499 0.9817**
B4-宽 B4-wide ln(I/I0) = 0.0100h +2.2203 0.9614**
B4-窄 B4-narrow ln(I/I0) = 0.0110h +1.6780 0.9755**

表2

密度和株行距配置对玉米雌雄穗幼穗分化的影响"

时期
Stage
密度 Density 株行距配置
Row spacing
雌穗Ear 雄穗Tassel
长度
Length
(mm)
中部直径
Middle part
diameter (mm)
长度
Length
(mm)
中部直径
Middle part diameter (mm)
小穗分化期
Spikelet differentiation period
A1 B1 6.59 1.66 5.73 1.43
B2 5.61 1.55 5.68 1.06
B3 6.26 1.75 5.46 1.32
B4 5.32 1.98 4.84 0.96
B5 5.66 1.41 4.56 1.05
平均值Average 5.89 1.67 5.25 1.16
A2 B1 5.41 1.69 4.93 1.18
B2 5.11 1.46 4.85 1.06
B3 5.00 1.59 3.46 0.96
B4 4.56 1.57 3.32 0.97
B5 4.21 1.57 3.13 0.93
平均值Average 4.86 1.58 3.94 1.02
小花分化期
Floret differentiation period
A1 B1 24.63 4.11 22.58 4.36
B2 21.08 4.13 21.88 3.72
B3 22.20 4.26 20.32 3.98
B4 19.95 4.30 20.39 3.98
B5 20.01 4.03 20.46 3.49
平均值Average 21.57 4.17 21.13 3.91
A2 B1 18.28 3.83 21.37 3.95
B2 17.74 4.13 17.69 3.15
B3 14.49 4.11 17.93 3.49
B4 14.43 4.08 17.18 3.02
B5 13.44 3.89 17.12 3.09
平均值Average 15.68 4.01 18.26 3.34

图4

玉米雌穗小穗分化和小花分化期形态特征 a1~a5分别代表小穗分化期(6月29日)的A1B1~A1B5; b1~b5分别代表小穗分化期(6月29日)的A2B1~A2B5; c1~c5分别代表小花分化期(7月7日)的A1B1~A1B5; d1~d5分别代表小花分化期(7月7日)的A2B1~A2B5。"

图5

玉米雄穗小穗分化和小花分化期形态特征 a1~a5分别代表小穗分化期(6月20日)的A1B1~A1B5; b1~b5分别代表小穗分化期(6月20日)的A2B1~A2B5; c1~c5分别代表小花分化期(6月26日)的A1B1~A1B5; d1~d5分别代表小花分化期(6月26日)的A2B1~A2B5。"

表3

密度和株行距配置对玉米雄穗特性的影响"

年份
Year
密度
Density
株行距配置
Row spacing
主轴长度
Spindle length (cm)
分枝数
Branch number
成对小穗数
Spikelet number
2017 A1 B1 46.55 a 8.50 a 364.13 a
B2 46.25 a 8.25 a 348.00 ab
B3 45.90 a 8.75 a 344.00 b
B4 45.45 ab 8.25 a 342.50 b
B5 44.63 b 8.50 a 336.25 b
平均值Average 45.76 A 8.45 A 346.98 A
A2 B1 44.75 a 8.50 a 352.50 a
B2 43.45 ab 8.00 a 350.75 a
B3 43.18 b 8.50 a 341.75 a
B4 42.00 b 8.25 a 337.50 a
B5 42.00 b 8.00 a 335.00 a
平均值Average 43.08 A 8.25 A 343.50 A
F 密度 Density (D) 18.55* 3.00 2.71
F-value 行距Row spacing (R) 5.16** 0.38 3.02*
密度×行距D×R 0.52 0.10 0.27
2018 A1 B1 59.00 a 9.40 a 355.00 a
B2 58.60 a 8.80 a 326.40 ab
B3 57.30 ab 9.80 a 343.60 a
B4 56.00 b 9.40 a 319.40 b
平均值Average 57.73 A 9.35 A 336.10 A
A2 B1 56.70 ab 9.20 a 315.20 a
B2 58.50 a 8.80 a 314.60 a
B3 55.30 bc 9.20 a 312.60 a
B4 54.50 c 9.20 a 301.20 a
平均值Average 56.25 B 9.10 A 310.90 B
A3 B1 55.90 a 8.80 a 282.80 a
B2 55.50 a 8.60 a 270.80 a
B3 52.80 b 9.00 a 289.00 a
B4 55.80 a 9.20 a 289.00 a
平均值Average 55.00 B 8.90 A 282.90 C
F 密度 Density (D) 21.09** 0.34 29.29**
F-value 行距Row spacing (R) 8.08** 0.82 0.87
密度×行距 D×R 2.42* 0.11 0.55

表4

密度和株行距配置对玉米雌穗分化特性的影响"

年份
Year
密度
Density
行距
Row spacing
分化的小花总数
No. of total florets
吐丝小花数
No. of silked florets
正常受精小花数No. of fertilized
florets
退化小花数No. of degenerated
florets
败育花数
No. of abortive
florets
花败育率
Abortion rate
of floret (%)
单株果穗受精率Fertilization rate per plant (%)
2017 A1 B1 925.67 a 877.00 a 809.00 a 48.67 b 116.67 b 12.60 b 92.24 a
B2 900.33 b 839.00 b 767.67 b 61.33 b 132.67 b 14.73 b 91.54 ab
B3 929.00 a 875.00 a 805.67 a 54.00 b 123.33 b 13.26 b 92.08 a
B4 927.00 a 873.00 a 795.00 a 54.00 b 132.00 b 14.24 b 91.08 ab
B5 930.00 a 825.67 b 745.00 c 104.33 a 185.00 a 19.89 a 90.26 b
平均值Average 922.40 A 857.93 A 784.47 A 64.47 A 137.93 A 14.94 A 91.44 A
A2 B1 898.00 b 832.67 ab 762.33 a 65.33 b 135.67 c 15.11 c 91.56 a
B2 881.33 c 811.67 b 741.33 a 69.67 b 140.00 c 15.88 c 91.31 a
B3 904.00 ab 837.00 a 761.00 a 67.00 b 143.00 c 15.81 c 90.92 a
B4 901.33 ab 822.00 ab 714.00 b 79.33 b 187.33 b 20.82 b 86.84 b
B5 918.67 a 789.00 c 673.33 c 129.67 a 245.33 a 26.67 a 85.39 b
平均值Average 900.67 A 818.47 A 730.40 A 82.20 A 170.27 A 18.86 A 89.20 A
FF-value 密度Density(D) 15.64 45.19* 21.88* 54.30* 60.49* 91.34* 1.11
行距 Row spacing (R) 6.65** 13.68** 21.52** 17.77** 19.54** 18.18** 13.12**
密度×行距(D×R) 0.47 0.60 2.75 0.41 2.10 2.08 4.62*
2018 A1 B1 910.83 a 849.17 b 776.67 a 61.67 a 134.17 c 14.73 c 91.52 a
B2 878.50 c 842.67 b 748.00 b 35.83 c 130.50 c 14.84 c 88.85 b
B3 919.17 a 883.00 a 745.67 b 36.17 c 173.50 a 18.83 a 84.42 c
B4 893.00 b 837.50 b 739.00 b 55.50 b 154.00 b 17.19 b 88.31 b
平均值Average 900.38 A 853.08 A 752.33 A 47.29 B 148.04 B 16.40 C 88.28 A
A2 B1 857.83 b 825.83 ab 715.33 a 32.00 c 142.50 c 16.61 c 86.69 a
B2 855.67 b 804.33 b 687.33 b 51.33 b 168.33 b 19.67 b 85.47 a
B3 901.17 a 844.00 a 702.17 ab 57.17 a 199.00 a 21.97 a 83.20 b
B4 874.83 b 816.50 b 670.17 c 58.33 a 204.67 a 23.40 a 82.29 b
平均值Average 872.38 B 822.67 B 693.75 B 49.71 AB 178.63 A 20.41 B 84.41 B
A3 B1 845.33 a 783.50 a 650.33 a 61.83 a 195.00 a 23.01 a 82.97 a
B2 807.50 b 749.00 b 617.33 b 58.50 a 190.17 a 23.47 a 82.40 a
B3 855.33 a 794.83 a 659.17 a 60.50 a 196.17 a 22.93 a 82.95 a
B4 862.67 a 801.33 a 667.33 a 61.33 a 195.33 a 22.62 a 83.28 a
平均值Average 842.71 C 782.17 C 648.54 C 60.54 A 194.17 A 23.01 A 82.90 B
FF-value 密度 Density(D) 67.38** 75.72** 190.38** 14.84* 39.14** 156.19** 49.98**
行距 Row spacing(R) 15.87** 9.31** 9.41** 12.28** 17.30** 20.11** 10.30**
密度×行距(D×R) 2.63 1.92 5.95** 32.37** 5.47** 9.30** 4.65**

表5

密度和株行距配置对玉米产量及其构成的影响"

年份Year 密度Density 行距
Row spacing
穗长
Ear length (cm)
秃尖
Bald length (cm)
穗粗
Ear diameter (cm)
空秆率Empty rate (%) 倒伏率Lodging rate (%) 行粒数
No. of kernels per line
穗粒数
No. of kernels per ear
百粒重
100-grain weight (g)
有效穗数
Effective number of spikes
产量
Yield (kg hm-2)
2017 A1 B1 18.12 a 0.97 b 4.86 a 0.33 a 3.72 a 43.06 a 706.52 a 26.47 a 45833.34 a 7080.28 a
B2 17.63 ab 1.23 ab 4.54 c 0.00 a 7.78 a 41.17 b 647.75 b 26.80 a 45061.73 a 6968.19 a
B3 17.97 a 1.20 ab 4.69 b 0.00 a 3.96 a 41.94 ab 698.76 a 26.47 a 43865.74 a 6889.22 ab
B4 17.50 b 1.03 b 4.54 c 0.00 a 4.32 a 41.84 ab 692.21 a 26.16 a 42939.82 ab 6542.59 bc
B5 18.02 a 1.65 a 4.63 b 0.00 a 2.95 a 41.90 ab 688.73 a 26.28 a 40277.78 b 6494.62 c
平均值Average 17.85 A 1.22 A 4.65 A 0.07 A 4.55 B 41.98 A 686.80 A 26.44 A 43595.68 B 6794.98 A
A2 B1 16.62 ab 1.23 b 4.51 a 0.07 b 5.96 b 40.41 a 651.69 a 23.35 a 66203.70 a 8617.63 a
B2 16.75 a 1.58 ab 4.41 b 0.68 a 13.06 a 39.07 ab 642.70 a 21.95 b 67746.92 a 8425.19 a
B3 16.80 a 1.48 ab 4.51 a 0.90 a 7.73 b 39.35 ab 650.86 a 23.10 a 62384.26 b 8190.65 a
B4 16.20 b 1.52 ab 4.40 b 0.60 a 13.02 a 38.27 b 621.90 a 23.73 a 60648.15 b 7639.54 b
B5 17.02 a 1.75 a 4.46 ab 0.00 b 6.46 b 39.14 ab 645.86 a 23.03 a 56388.89 c 7390.68 b
平均值 Average 16.68 A 1.51 A 4.46 A 0.45 A 9.25 A 39.25 A 642.60 B 23.03 A 62674.38 A 8052.74 A
F 密度Density (D) 26.18* 34.59* 16.88 4.47 108.54** 25.25* 169.86** 78.01* 202.51** 49.04*
F-value 行距 Row spacing (R) 3.41* 2.89 15.64** 1.34 3.68* 2.55 2.16 0.92 12.45** 9.57**
密度×行距 D×R 0.76 0.29 3.92* 2.80 0.89 0.39 1.68 3.43* 1.82 1.08
2018 A1 B1 17.59 b 1.89 a 5.07 b 3.11 a 3.15 a 37.39 ab 640.73 a 29.95 a 46969.70 a 7475.55 a
B2 18.04 a 2.01 a 5.13 a 3.59 a 3.94 a 36.60 c 623.44 b 29.49 a 45286.20 a 7128.53 b
B3 18.01 a 1.91 a 5.07 b 2.43 a 1.64 a 37.99 a 647.04 a 29.66 a 44570.71 a 7185.98 b
B4 17.98 a 2.11 a 5.07 b 1.86 a 1.87 a 36.93 bc 627.82 b 29.92 a 45959.60 a 7046.00 b
平均值 Average 17.90 A 1.98 A 5.08 A 2.75 A 2.65 A 37.23 A 634.76 A 29.75 A 45696.55 A 7209.02 B
A2 B1 16.81 ab 2.11 ab 4.96 a 2.28 a 6.90 a 32.96 a 561.20 a 29.59 a 63973.06 a 8783.38 a
B2 17.00 a 2.35 a 4.96 a 3.91 a 8.38 a 31.45 b 531.64 b 29.04 a 61952.86 a 8351.56 b
B3 16.62 b 1.90 bd 5.00 a 1.66 a 11.92 a 32.87 a 559.99 a 29.41 a 57449.49 b 7994.91 c
B4 16.71 b 2.10 bc 4.98 a 3.39 a 14.41 a 32.66 a 557.33 a 29.11 a 60732.32 a 8200.29 b
平均值 Average 16.79 AB 2.12 A 4.97 AB 2.81 A 10.40 A 32.49 B 552.54 B 29.28 AB 61026.94 A 8332.54 A
A3 B1 15.73 ab 2.36 a 4.85 ab 18.03 a 37.59 a 26.67 b 451.65 bc 28.36 a 63131.31 b 7090.71 b
B2 15.56 b 2.43 a 4.83 b 18.34 a 43.88 a 26.65 b 449.94 c 28.81 a 64141.41 ab 6888.06 b
B3 15.80 ab 2.08 b 4.87 ab 14.01 a 33.94 ab 27.57 b 468.68 b 28.94 a 63510.10 b 7094.03 b
B4 16.03 a 2.28 ab 4.89 a 7.07 b 26.16 b 28.97 a 492.50 a 28.99 a 68308.08 a 7665.79 a
平均值 Average 15.78 B 2.29 A 4.86 B 14.36 A 35.39 A 27.46 C 465.69 C 28.78 B 64772.73 A 7184.65 B
F 密度Density (D) 21.30** 8.80* 16.49* 4.71 8.30* 47.18** 48.49** 11.02* 7.78* 61.72**
F-value 行距 Row spacing (R) 2.09 4.35* 0.67 2.41 0.53 5.93** 9.47** 0.46 2.55 7.28**
密度×行距 D×R 4.31** 0.96 1.64 1.71 1.39 2.70* 4.08** 1.02 1.72 7.59**

表6

雌雄穗特性与产量构成因素以及穗位层透光率的关系"

指标
Index
穗长
Ear length
秃尖长
Bald length
穗粗
Ear diameter
行粒数
No. of kernels per line
穗粒数
No. of kernels per ear
百粒重
100-grain weight
穗位层透光率
Light transmittance of ear position layer
消光系数
Extinction coefficient
小穗分化期Spikelet differentiation 雌穗特性
Ear characteristics
长Length 0.78** -0.72* 0.89** 0.88** 0.80** 0.72* 0.16 0
中部直径Central diameter 0.15 0.22 -0.73* 0.37 0.43 0.32 0.02 0.07
雄穗特性
Tassel characteristics
长Length 0.66* -0.73* 0.64* 0.78** 0.60 0.64* 0.03 0.18
中部直径Central diameter 0.56 -0.62* 0.83** 0.67* 0.63* 0.44 -0.11 0.22
小花分化期Floret differentiation 雌穗特性
Ear characteristics
长Length 0.82** -0.75** 0.83** 0.92** 0.79** 0.79** 0.24 -0.01
中部直径Central diameter 0.40 -0.46 0.26 0.37 0.44 0.49 0.26 -0.21
雄穗特性
Tassel characteristics
长Length 0.69* -0.77** 0.74** 0.87** 0.65* 0.76** 0.17 0.08
中部直径Central diameter 0.65* -0.90** 0.81** 0.87** 0.78** 0.67* 0.05 0.12
吐丝期
Silking stage
雌穗特性
Ear characteristics
总小花数No. of total florets/ear 0.73** -0.77** -0.30 0.89** 0.91** -0.37 0.83** -0.75**
吐丝小花数No. of silked florets 0.79** -0.66** 0.10 0.72** 0.77** 0.02 0.53** -0.53*
受精小花数No. of fertilization florets 0.79** -0.82** -0.18 0.88** 0.89** -0.27 0.59** -0.50*
小花败育率Rate of floret barrenness -0.64** 0.65** 0.06 -0.66** -0.67** 0.13 -0.28 0.22
单株果穗受精率Fertilization rate per ear 0.64** -0.80** -0.41 0.85** 0.84** -0.48* 0.52* -0.39
雄穗特性
Tassel characteristics
成对小穗数Spikelet number 0.71** -0.82** -0.38 0.94** 0.93** -0.51* 0.58** -0.51*
[1] 王楷, 王克如, 王永宏, 赵健, 赵如浪, 王喜梅, 李健, 梁明晰, 李少昆 . 密度对玉米产量(>15000 kg hm -2)及其产量构成因子的影响 . 中国农业科学, 2012,45:3437-3445.
Wang K, Wang K R, Wang Y H, Zhao J, Zhao R L, Wang X M, Li J, Liang M X, Li S K . Effects of density on maize yield and yield components. Sci Agric Sin, 2012,45:3437-3445 (in Chinese with English abstract).
[2] 吕丽华, 陶洪斌, 夏来坤, 张雅杰, 赵明, 赵久然, 王璞 . 不同种植密度下的夏玉米冠层结构及光合特性. 作物学报, 2008,34:447-455.
Lyu L H, Tao H B, Xia L K, Zhang Y J, Zhao M, Zhao J R, Wang P . Canopy structure and photosynthesis traits of summer maize under different planting densities. Acta Agron Sin, 2008,34:447-455 (in Chinese with English abstract).
[3] 冀华, 李宏, 张树伟 . 玉米雌雄穗发育及其与产量的关系. 山西农业科学, 2011,39:754-755.
Ji H, Li H, Zhang S W . Differentiation and growth of the male and female ears and the relationship with yield in maize. J Shanxi Agric Sci, 2011,39:754-755 (in Chinese with English abstract).
[4] 高英波, 陶洪斌, 黄收兵, 田北京, 王丽君, 李芸, 任建宏, 王璞 . 密植和行距配置对夏玉米群体光分布及光合特性的影响. 中国农业大学学报, 2015,20(6):9-15.
Gao Y B, Tao H B, Huang S B, Tian B J, Wang L J, Li Y, Ren J H, Wang P . Effects of high planting density and row spacing on canopy light distribution and photosynthetic characteristics of summer maize . J China Agric Univ, 2015,20(6):9-15 (in Chinese with English abstract).
[5] 苌建峰, 张海红, 李鸿萍, 董朋飞, 李潮海 . 不同行距配置方式对夏玉米冠层结构和群体抗性的影响. 作物学报, 2016,42:104-112.
Chang J F, Zhang H H, Li H P, Dong P F, Li C H . Effects of different row spaces on canopy structure and resistance of summer maize. Acta Agron Sin, 2016,42:104-112 (in Chinese with English abstract).
[6] 韩成卫, 孔晓民, 刘丽, 曾苏明 . 不同种植模式对玉米生长发育、产量及机械化收获效率的影响. 玉米科学, 2012,20(6):89-93.
Han C W, Kong X M, Liu L, Zeng S M . Contrast test for maize different planting patterns under the mechanize harvest. J Maize Sci, 2012,20(6):89-93 (in Chinese with English abstract).
[7] 梁秀兰, 张振宏 . 玉米穗分化与叶龄关系的研究. 华南农业大学学报, 1995, ( 3):83-87.
Liang X L, Zhang Z H . Study on the relationship between ear differentiation and leaf age in maize. J South China Agric Univ, 1995, ( 3):83-87 (in Chinese).
[8] 李叶蓓, 陶洪斌, 王若男, 张萍, 吴春江, 雷鸣, 张巽, 王璞 . 干旱对玉米穗发育及产量的影响. 中国生态农业学报, 2015,23:383-391.
Li Y B, Tao H B, Wang R N, Zhang P, Wu C J, Lei M, Zhang X, Wang P . Effect of drought on ear development and yield of maize. Chin J Eco-Agric, 2015,23:383-391 (in Chinese with English abstract).
[9] 滕世云 . 玉米穗分化与叶龄的关系. 山西农业科学, 1983, ( 4):4-5.
Teng S Y . Relationship between ear differentiation and leaf age. J Shanxi Agric Sci, 1983, ( 4):4-5 (in Chinese).
[10] 曹彬, 张世杰, 孙占育, 曹三潮, 赵志红 . 玉米叶龄指数与穗分化回归关系的研究初报. 玉米科学, 2005,13(1):86-88.
Cao B, Zhang S J, Sun Z Y, Cao S C, Zhao Z H . Research report of regression relationship between leaf number index and spike differentiation in maize. J Maize Sci, 2005,13(1):86-88 (in Chinese with English abstract).
[11] 张养利, 李进仓, 张德仓 . 16个玉米新品种叶龄指数与穗分化关系的试验初报. 陕西农业科学, 2009,55(5):14-16.
Zhang Y L, Li J C, Zhang D C . Preliminary report on the relationship between leaf age index and ear differentiation of 16 new maize varieties. Shaanxi J Agric Sci, 2009,55(5):14-16 (in Chinese).
[12] 黄铨, 罗守德, 武殿林, 郭国光, 王先娥 . 玉米穗分化时期与植株外部形态及叶龄指数相互关系的研究. 山西农业科学, 1981, ( 10):6-8.
Huang Q, Luo S D, Wu D L, Guo G G, Wang X E . Study on the relationship between the ear differentiation stage of maize and the external morphology and leaf age index of plants. Shanxi J Agric Sci, 1981, ( 10):6-8 (in Chinese).
[13] 李春奇, 郑慧敏, 李芸, 李潮海 . 种植密度对夏玉米雌穗发育和产量的影响. 中国农业科学, 2010,43:2435-2442.
Li C Q, Zheng H M, Li Y, Li C H . Effect of planting density on the yield and development of maize ear. Sci Agric Sin, 2010,43:2435-2442 (in Chinese with English abstract).
[14] 徐正进, 董克 . 水稻叶片基角、开张角和披垂度的同时测定方法. 沈阳农业大学学报, 1991,22(2):185-187.
Xu Z J, Dong K . Simultaneous determination method of base angle, opening angle and sag of rice leaves. J Shenyang Agric Univ, 1991,22(2):185-187 (in Chinese).
[15] Wang Q, Niu Y . Effects of altered source-sink ratio on canopy, photosynthetic rate and yield of maize ( Zea mays L.). Photosynthetica, 1996,32:271-276.
[16] 孟佳佳, 董树亭, 石德杨, 张海燕 . 玉米雌穗分化与籽粒发育及败育的关系. 作物学报, 2013,39:912-918.
Meng J J, Dong S T, Shi D Y, Zhang H Y . Relationship of ear differentiation with kernel development and barrenness in maize ( Zea mays L.) . Acta Agron Sin, 2013,39:912-918 (in Chinese with English abstract).
[17] Mohammadi G R, Ghobadi M E, Sheikhehpoor S . Phosphate biofertilizer, row spacing and plant density effects on corn yield and weed growth. Am J Plant Sci, 2012,3:425-429.
[18] 代旭峰, 王国强, 刘志斋, 王久光, 马宇, 蔡一林 . 不同密度下不同行距对玉米光合及产量的影响. 西南大学学报(自然科学版), 2013,35(3):15-21.
Dai X F, Wang G Q, Liu Z Z, Wang J G, Ma Y, Cai Y L . Effects of different row spacing on photosynthesis and yield of maize under different densities. J Southwest Univ(Nat Sci Edn), 2013,35(3):15-21 (in Chinese with English abstract).
[19] Maddonni G A, Chelle M, Drouet J L, Andrieu B . Light interception of contrasting azimuth canopies under square and rectangular plant spatial distributions: simulations and crop measurements. Field Crops Res, 2001,70:1-13.
[20] 杨吉顺, 高辉远, 刘鹏, 李耕, 董树亭, 张吉旺, 王敬锋 . 种植密度和行距配置对超高产夏玉米群体光合特性的影响. 作物学报, 2010,36:1226-1233.
Yang J S, Gao H Y, Liu P, Li G, Dong S T, Zhang J W, Wang J F . Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn. Acta Agron Sin, 2010,36:1226-1233 (in Chinese with English abstract).
[21] 刘朝巍, 张恩和, 谢瑞芝, 刘武仁, 李少昆 . 不同施氮方式对宽窄行交替休闲种植玉米产量和光合特性的影响. 草业学报, 2012,21(1):34-42.
Liu C W, Zhang E H, Xie R Z, Liu W R, Li S K . Effect of different nitrogen methods on yield and photosynthesis of maize under the alternative fallow high stubble about narrow row and wide row. Acta Pratac Sin, 2012,21(1):34-42 (in Chinese with English abstract).
[1] 白伟, 孙占祥, 张立祯, 郑家明, 冯良山, 蔡倩, 向午燕, 冯晨, 张哲. 耕层构造对土壤三相比和春玉米根系形态的影响[J]. 作物学报, 2020, 46(5): 759-771.
[2] 赵小红,白羿雄,王凯,姚有华,姚晓华,吴昆仑. 种植密度对2个青稞品种抗倒伏及秸秆饲用特性的影响[J]. 作物学报, 2020, 46(4): 586-595.
[3] 李俊,李亮,李夏莹,宋贵文,沈平,张丽,翟杉杉,柳方方,吴刚,张秀杰,武玉花. 转基因玉米MIR604基体标准物质研制[J]. 作物学报, 2020, 46(4): 473-483.
[4] 梁思维,姜昊梁,翟立红,万小荣,李小琴,蒋锋,孙伟. 玉米HD-ZIP I亚家族基因鉴定及表达分析[J]. 作物学报, 2020, 46(4): 532-543.
[5] 丁永刚,李福建,王亚华,汤小庆,杜同庆,朱敏,李春燕,朱新开,丁锦峰,郭文善. 稻茬小麦氮高效品种产量构成和群体质量特征[J]. 作物学报, 2020, 46(4): 544-556.
[6] 马娟, 曹言勇, 王利锋, 李晶晶, 王浩, 范艳萍, 李会勇. 利用WGCNA鉴定玉米株高和穗位高基因共表达模块[J]. 作物学报, 2020, 46(3): 385-394.
[7] 郑飞娜,初金鹏,张秀,费立伟,代兴龙,贺明荣. 播种方式与种植密度互作对大穗型小麦品种产量和氮素利用率的调控效应[J]. 作物学报, 2020, 46(3): 423-431.
[8] 王士红,杨中旭,史加亮,李海涛,宋宪亮,孙学振. 增密减氮对棉花干物质和氮素积累分配及产量的影响[J]. 作物学报, 2020, 46(3): 395-407.
[9] 陈晓影,刘鹏,程乙,董树亭,张吉旺,赵斌,任佰朝,韩坤. 基于磷肥施用深度的夏玉米根层调控提高土壤氮素吸收利用[J]. 作物学报, 2020, 46(02): 238-248.
[10] 姚晨涛,乔治华,宋雪慧,张风文,孙晓,李刚,李向东,张吉旺,姜兴印. 不同成膜剂对玉米噻虫啉悬浮种衣剂的持效性及安全性影响[J]. 作物学报, 2020, 46(02): 269-279.
[11] 付江鹏,贺正,贾彪,刘慧芳,李振洲,刘志. 滴灌玉米临界氮稀释曲线与氮素营养诊断研究[J]. 作物学报, 2020, 46(02): 290-299.
[12] 赵波,李小龙,周茂林,宋碧,雷恩,李钟,吴雅薇,袁继超,孔凡磊. 西南玉米机械粒收籽粒破碎率现状及影响因素分析[J]. 作物学报, 2020, 46(01): 74-83.
[13] 王素芳,薛惠云,张志勇,汤菊香. 棉花根系生长与叶片衰老的协调性[J]. 作物学报, 2020, 46(01): 93-101.
[14] 万泽花,任佰朝,赵斌,刘鹏,张吉旺. 不同熟期夏玉米品种籽粒灌浆脱水特性和激素含量变化[J]. 作物学报, 2019, 45(9): 1446-1453.
[15] 李艳大,黄俊宝,叶春,舒时富,孙滨峰,陈立才,王康军,曹中盛. 不同氮素水平下双季稻株型与冠层内光截获特征研究[J]. 作物学报, 2019, 45(9): 1375-1385.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清;李阳生;吴福顺;廖江林;李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[5] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[6] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[7] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[8] 王逸群. 根瘤菌对水稻的感染[J]. 作物学报, 2002, 28(01): 32 -35 .
[9] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[10] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .