欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (7): 1025-1032.doi: 10.3724/SP.J.1006.2020.94152

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆GmNRT1.2aGmNRT1.2b基因的克隆及功能探究

李国纪**,朱林**,曹金山,王幼宁()   

  1. 华中农业大学植物科学技术学院, 湖北武汉 430070
  • 收稿日期:2019-10-09 接受日期:2020-03-24 出版日期:2020-07-12 发布日期:2020-04-27
  • 通讯作者: 王幼宁 E-mail:youningwang@mail.hzau.edu.cn
  • 作者简介:李国纪, E-mail: lgj2389868525@163.com|朱林, E-mail: onelin@163.com
    ** 同等贡献
  • 基金资助:
    国家科技重大专项(2018ZX0800919B);国家自然科学基金项目(31872873)

Cloning and functional analysis of GmNRT1.2a and GmNRT1.2b in soybean

LI Guo-Ji**,ZHU Lin**,CAO Jin-Shan,WANG You-Ning()   

  1. College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2019-10-09 Accepted:2020-03-24 Online:2020-07-12 Published:2020-04-27
  • Contact: You-Ning WANG E-mail:youningwang@mail.hzau.edu.cn
  • About author:** Contributed equally to this work
  • Supported by:
    National Transgenic Major Project of China(2018ZX0800919B);National Natural Science Foundation of China(31872873)

摘要:

拟南芥中硝酸盐的吸收、转运和分配是通过硝酸盐转运蛋白(nitrate transporter, NRT)实现的。尽管之前的生物信息学分析推测大豆GmNRT1.2s可能参与共生固氮过程, 但尚未开展相应的功能研究。本研究通过对其表达模式分析发现, GmNRT1.2aGmNRT1.2b分别在根和叶中高表达, 且受硝酸盐诱导, 在接种根瘤菌与结瘤因子(nod factors, NFs)后表达量明显升高。功能研究结果显示, 过表达GmNRT1.2aGmNRT1.2b后大豆根瘤数目显著增加。本研究为深入探究GmNRT1.2aGmNRT1.2b调控大豆共生固氮过程的分子机制提供了一定的数据支持。

关键词: 大豆, 根瘤, 表达分析, 结瘤, 共生固氮

Abstract:

Nitrate transporters (NRTs) have been found to be involved in nitrate uptake, transport and allocation in Arabidopsis. The role of GmNRT1.2s in soybean (Glycine max) symbiotic nitrogen fixation process has been speculated by bioinformatics analysis, however, its biological function has not been explored yet. In this study, we mainly focused on analyzing the expression pattern and biological function of GmNRT1.2a and GmNRT1.2b in soybean. The relative expression levels of GmNRT1.2a and GmNRT1.2b were higher in leaves, which induced by nitrate and up-regulated with increasing nitrate concentration. GmNRT1.2a and GmNRT1.2b expressions were also induced by rhizobial inoculation and nod factor (NF) treatment. Overexpression of GmNRT1.2a or GmNRT1.2b caused dramatic increment of nodule number. The results provide some data for further investigating the molecular mechanism of GmNRT1.2a and GmNRT1.2b in regulating the symbiotic nitrogen fixation process of soybean.

Key words: soybean, nodule, expression analysis, nodulation, symbiotic nitrogen fixation

图1

GmNRT1.2a和GmNRT1.2b过表达载体构建 A: PCR扩增后得到的GmNRT1.2a和GmNRT1.2b目的基因片段; B: pEGAD过表达载体图谱及酶切位点。"

图2

GmNRT1.2a和GmNRT1.2b在大豆不同发育时期的组织表达模式分析 标以不同小写字母的大豆不同组织中对应基因的表达水平在P < 0.05时差异显著。DAI: 接种后天数。"

图3

GmNRT1.2a和GmNRT1.2b在不同浓度下的硝酸盐下的表达模式 大豆在0N (0 mmol L-1)、LN (0.25 mmol L-1)和HN (15.75 mmol L-1) 3种硝酸盐浓度梯度下生长到15 d, 取大豆根部组织样品。用荧光定量PCR检测GmNRT1.2a (A)和GmNRT1.2b (B)的表达, GmELF1b为内参基因。图中标以不同字母的基因表达水平在P < 0.05时差异显著。"

图4

GmNRT1.2a和GmNRT1.2b响应接种根瘤菌和结瘤因子表达模式分析 标以不同小写字母的基因表达水平在根瘤菌和结瘤因子处理的大豆植株与对照间在P < 0.05水平上差异显著。"

图5

在低氮培养条件下过表达GmNRT1.2a或GmNRT1.2b增加结瘤数目 A, B: 在接种根瘤菌28 d后, 利用荧光定量PCR检测EV、35S::GmNRT1.2a和35S::GmNRT1.2b单条毛状根表达, 以GmELF1b基因作为内参基因。标以不同小写字母的柱值在不同转基因大豆植株间在P < 0.05时的差异显著。C: EV、35S::GmNRT1.2a和35S::GmNRT1.2b的单条根的根瘤表型, Bar = 5 mm。D: 统计EV、35S::GmNRT1.2a和35S::GmNRT1.2b的根瘤数目。*和***分别表示转基因株系35S::GmNRT1.2a和35S::GmNRT1.2b的根瘤数目与对照在P < 0.05和P < 0.001水平差异显著。"

[1] 张合琼, 张汉马, 梁永书, 南文斌. 植物硝酸盐转运蛋白研究进展. 植物生理学报, 2016,52:141-149.
Zhang H Q, Zhang H M, Liang Y S, Nan W B. Research progress of nitrate in plant transport mechanism. Acta Phytophysiol Sin, 2016,52:141-149 (in Chinese with English abstract).
[2] 姜丽娜, 张凯, 宋飞, 张新敏, 蒿宝珍, 李春喜. 拔节期追氮对冬小麦产量、效益及氮素吸收和利用的影响. 麦类作物学报, 2013,33:716-721.
doi: 10.7606/j.issn.1009-1041.2013.04.016
Jiang L N, Zhang K, Song F, Zhang X M, Hao B Z, Li C X. Effects of nitrogen topdressing at jointing stage on grain yield, benefit, absorption and utilization of nitrogen in winter wheat. J Triticeae Crops, 2013,33:716-721 (in Chinese with English abstract).
doi: 10.7606/j.issn.1009-1041.2013.04.016
[3] Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot, 2010,105:1141-1157.
pmid: 20299346
[4] Dong C X, Shen Q R, Wang G. Tomato growth and organic acid changes in response to partial replacement of NO3--N by NH4+-N. Pedosphere, 2004 , 14:159-164.
[5] Vojtíšková L, Munzarová E, Votrubová O, Řihová A, Juřicová B. Growth and biomass allocation of sweet flag (Acorus calamus L.) under different nutrient conditions. Hydrobiologia, 2004,518:9-22.
doi: 10.1023/B:HYDR.0000025052.81373.f3
[6] 张富仓, 严富来, 范兴科, 李国栋, 刘翔, 陆军胜, 王英, 麻玮青. 滴灌施肥水平对宁夏春玉米产量和水肥利用效率的影响. 农业工程学报, 2018,34(22):111-120.
Zhang F C, Yan F L, Fan X K, Li G D, Liu X, Lu J S, Wang Y, Ma W Q. Effects of irrigation and fertilization levels on grain yield and water-fertilizer use efficiency of drip-fertigation spring maize in Ningxia. Trans CSAE, 2018,34(22):111-120 (in Chinese with English abstract).
[7] Ren Y Z, Qian Y Y, Xu Y H, Zou C Q, Liu D C, Zhao X Q, Zhang A M, Tong Y P. Characterization of QTLs for root traits of wheat grown under different nitrogen and phosphorus supply levels. Front Plant Sci, 2017,8:2096.
doi: 10.3389/fpls.2017.02096 pmid: 29312372
[8] Walch-Liu P, Forde B G. Nitrate signalling mediated by the NRT1.1 nitrate transporter antagonizes L-glutamate-induced changes in root architecture. Plant J, 2008,54:820-828.
doi: 10.1111/j.1365-313X.2008.03443.x pmid: 18266918
[9] Wang R, Okamoto M, Xing X, Crawford N M. Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol, 2003,132:556-567.
doi: 10.1104/pp.103.021253 pmid: 12805587
[10] Forde B G. Nitrogen signalling pathways shaping root system architecture: an update. Curr Opin Plant Biol, 2014,21:30-36.
doi: 10.1016/j.pbi.2014.06.004 pmid: 24997289
[11] Alboresi A, Gestin C, Leydecker M T, Bedu M, Meyer C, Truong H M. Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant Cell Environ, 2005,28:500-512.
doi: 10.1111/j.1365-3040.2005.01292.x pmid: 16229082
[12] Castro Marín I, Loef I, Bartetzko L, Searle I, Coupland G, Stitt M, Osuna D. Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways. Planta, 2011,233:539-552.
pmid: 21113723
[13] Madsen E B, Madsen L H, Radutoiu S, Rakwalska M, Szczyglowski K, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J. A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature, 2003,425:637-640.
doi: 10.1038/nature02045 pmid: 14534591
[14] Radutoiu S, Madsen L H, Madsen E B, Felle H H, Umehara Y, Grønlund M, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J. Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature, 2003,425:585-592.
pmid: 14534578
[15] Arrighi J F, Barre A, Ben Amor B, Bersoult A, Soriano L C, Mirabella R, de Carvalho-Niebel F, Journet E P, Ghérardi M, Huguet T, Geurts R, Dénarié J, Rougé P, Gough C. The Medicago truncatula lysin motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant Physiol, 2006,142:265-279.
pmid: 16844829
[16] Indrasumunar, A, Searle I, Lin M H, Kereszt A, Men A, Carroll B J, Gresshoff P M. Nodulation factor receptor kinase 1α controls nodule organ number in soybean (Glycine max L. Merr.). Plant J, 2011,65:39-50.
pmid: 21175888
[17] Searle I, Miyagi M, Li D X, Nguyen C D T, Men A, Carroll B J, Gresshoff P M. Inactivation of duplicated nod factor receptor 5 (NFR5) genes in recessive loss-of-function non-nodulation mutants of allotetraploid soybean (Glycine max L. Merr.). Plant Cell Physiol, 2010,51:201-214.
doi: 10.1093/pcp/pcp178 pmid: 20007291
[18] Röhrig H, Schmidt J, Miklashevichs E, Schell J, John M. Soybean ENOD40 encodes two peptides that bind to sucrose synthase. Proc Natl Acad Sci USA, 2002,99:1915-1920.
doi: 10.1073/pnas.022664799 pmid: 11842184
[19] Wang Y N, Wang L X, Zou Y M, Chen L, Cai Z M, Zhang S L, Zhao F, Tian Y P, Jiang Q, Ferguson B J, Gresshoff P M, Li X. Soybean miR172c targets the repressive AP2 transcription factor NNC1 to activate ENOD40 expression and regulate nodule initiation. Plant Cell, 2014,26:4728-4801.
[20] Li X, Zhao J, Tan Z, Zeng R, Liao H. GmEXPB2, a cell wall β-expansin, affects soybean nodulation through modifying root architecture and promoting nodule formation and development. Plant Physiol, 2015,169:2640-2653.
pmid: 26432877
[21] Chen L Y, Qin L, Zhou L, Li X, Chen Z, Sun L, Wang W, Lin Z, Zhao J, Yamaji N, Ma J F, Gu M, Xu J, Liao H. A nodule-localized phosphate transporter GmPT7 plays an important role in enhancing symbiotic N2 fixation and yield in soybean. New Phytol, 2018,221:2013-2025.
doi: 10.1111/nph.15541 pmid: 30317659
[22] Yan Q Q, Wang L X, Li X. GmBEHL1, a BES1/BZR1 family protein, negatively regulates soybean nodulation. Sci Rep, 2018,8:7614.
pmid: 29769571
[23] Choudhury S R, Pandey S. Specific subunits of heterotrimeric G proteins play important roles during nodulation in soybean. Plant Physiol, 2013,162:522-533.
doi: 10.1104/pp.113.215400 pmid: 23569109
[24] Choudhury S R, Pandey S. Phosphorylation-dependent regulation of G-protein cycle during nodule formation in soybean. Plant Cell, 2015,27:3260-3276.
doi: 10.1105/tpc.15.00517 pmid: 26498905
[25] Wang Y N, Yang W, Zuo Y Y, Zhu L, Hastwell A H, Chen L, Tian Y P, Su C, Ferguson B J, Li X. GmYUC2a mediates auxin biosynthesis during root development and nodulation in soybean. J Exp Bot, 2019,10:3165-3176.
[26] Cai Z M, Wang Y N, Zhu L, Tian Y P, Chen L, Sun Z X, Ullah I, Li X. GmTIR1/GmAFB3‐based auxin perception regulated by miR393 modulates soybean nodulation. New Phytol, 2017,215:672-686.
doi: 10.1111/nph.14632 pmid: 28598036
[27] Bustos-Sanmamed P, Mao G, Deng Y, Elouet M, Khan G A, Bazin J, Lelandais-Brière C. Overexpression of miR160 affects root growth and nitrogen-fixing nodule number in Medicago truncatula. Funct Plant Biol, 2013,40:1208-1220.
doi: 10.1071/FP13123 pmid: 32481189
[28] Wang Y N, Li K X, Chen L, Zou Y M, Liu H P, Tian Y P, Li D X, Wang R, Zhao F, Ferguson B J, Gresshoff P M, Li X. MicroRNA167-directed regulation of the auxin response factors, GmARF8a and GmARF8b, is required for soybean nodulation and lateral root development. Plant Physiol, 2015,168:984-999.
doi: 10.1104/pp.15.00265 pmid: 25941314
[29] Wang Y Y, Hsu P K, Tsay Y F. Uptake, allocation and signaling of nitrate. Trends Plant Sci, 2012,17:458-467.
doi: 10.1016/j.tplants.2012.04.006 pmid: 22658680
[30] Huang N C, Liu K H, Lo H J, Tsay Y F. Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. Plant Cell, 1999,11:1381-1392.
doi: 10.1105/tpc.11.8.1381 pmid: 10449574
[31] 朱林, 左妍妍, 曹金山, 王小迪, 杨薇, 王幼宁. 大豆NRT1.2同源基因的生物信息学分析. 大豆科学, 2019,38:371-378.
Zhu L, Zuo Y Y, Cao J S, Wang X D, Yang W, Wang Y N. Bioinformatic analysis of NRT1.2 homologous gene in soybean. Soybean Sci, 2019,38:371-378 (in Chinese with English abstract).
[32] Wang Y W, Li P C, Cao X F, Wang X J, Zhang A M, Li X. Identification and expression analysis of miRNAs from nitrogen-fixing soybean nodules. Biochem Biophys Res Commun, 2009,378:799-803.
doi: 10.1016/j.bbrc.2008.11.140 pmid: 19084500
[33] Kereszt A, Li D X, Indrasumunar A, Nguyen C D T, Nontachaiyapoom S, Kinkema M, Gresshoff P M. Agrobacterium rhizogenes mediated transformation of soybean to study root biology. Nat Protoc, 2007,2:948-952.
pmid: 17446894
[34] Jian B, Hou W S, Wu C X, Liu B, Liu W, Song S K, Bi Y R, Han T F. Agrobacterium rhizogenes-mediated transformation of Superroot-derived Lotus corniculatus plants: a valuable tool for functional genomics. BMC Plant Biol, 2009,9:78.
doi: 10.1186/1471-2229-9-78 pmid: 19555486
[35] Okamoto M, Vidmar J J, Glass A D. Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: responses to nitrate provision. Plant Cell Physiol, 2003,44:304-317.
pmid: 12668777
[36] Araki R, Hasegawa H. Expression of rice (Oryza sativa L.) genes involved in high-affinity nitrate transport during the period of nitrate induction. Breed Sci, 2006,56:295-302.
doi: 10.1270/jsbbs.56.295
[37] Hu B, Wang W, Ou S J, Li H2, Che R H, Zhang Z H, Chai X Y, Wang H R, Wang Y Q, Liang C Z, Liu L C, Piao Z Z, Deng Q Y, Deng K, Xu C, Liang Y, Zhang L Y, Li L G, Chu C C. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat Genet, 2015,47:834-838.
doi: 10.1038/ng.3337 pmid: 26053497
[38] Hu B, Jiang Z M, Wang W, Qiu Y H, Zhang Z H, Liu Y Q, Li A F, Gao X K, Liu L C, Qian Y W, Huang X H, Yu F F, Kang S, Wang Y Q, Xie J P, Cao S Y, Zhang L H, Wang Y C, Xie Q, Kopriva S, Chu C C. Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nat Plants, 2019,5:401-413.
doi: 10.1038/s41477-019-0384-1 pmid: 30911122
[39] Zhang J Y, Liu Y X, Zhang N, Hu B, Jin T, Xu H R, Qin R Y, Yan P X, Zhang X N, Guo X X, Hui J, Cao S Y, Wang X, Wang C, Wang H, Qu B Y, Fan G Y, Yuan L X, Garrido-Oter R, Chu C C, Bai Y. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat Biotechnol, 2019,37:676-684.
doi: 10.1038/s41587-019-0104-4 pmid: 31036930
[40] Lauter F R, Ninnemann O, Bucher M, Riesmeier J W, Frommer W B. Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato. Proc Natl Acad Sci USA, 1996,93:8139-8144.
pmid: 8755617
[41] Zhao X Q, Li Y J, Liu J, Li B, Liu Q Y, Tong Y P, Li J Y, Li Z S. Isolation and expression analysis of a high-affinity nitrate transporter TaNRT2.3 from roots of wheat. Acta Bot Sin, 2004,46:347-354.
[42] Zhou J J, Theodoulou F L, Muldin I, Ingemarsson B, Miller A J. Cloning and functional characterization of a Brassica napus transporter that is able to transport nitrate and histidine. J Biol Chem, 1998,278:12017-12023.
[1] 甘卓然, 石文茜, 黎永力, 侯智红, 李海洋, 程群, 董利东, 刘宝辉, 芦思佳. 大豆生物钟基因GmLNK1/2GmRVE4/8GmTOC1 CRISPR/Cas9组织表达分析及敲除靶点的鉴定[J]. 作物学报, 2020, 46(8): 1291-1300.
[2] 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005.
[3] 邹京南,于奇,金喜军,王明瑶,秦彬,任春元,王孟雪,张玉先. 外源褪黑素对干旱胁迫下大豆鼓粒期生理和产量的影响[J]. 作物学报, 2020, 46(5): 745-758.
[4] 赵晋锋,杜艳伟,王高鸿,李颜方,赵根有,王振华,王玉文,余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J]. 作物学报, 2020, 46(5): 700-711.
[5] 梁思维,姜昊梁,翟立红,万小荣,李小琴,蒋锋,孙伟. 玉米HD-ZIP I亚家族基因鉴定及表达分析[J]. 作物学报, 2020, 46(4): 532-543.
[6] 刘代铃,谢俊锋,何乾瑞,陈四维,胡跃,周佳,佘跃辉,刘卫国,杨文钰,武晓玲. 净作和套作下大豆贮藏蛋白11S、7S组分相对含量的QTL分析[J]. 作物学报, 2020, 46(3): 341-353.
[7] 赵伟,甄天悦,张子山,徐铮,高大鹏,丁聪,刘鹏,李耕,宁堂原. 增施磷肥提高弱光环境中夏大豆叶片光合能力及产量[J]. 作物学报, 2020, 46(02): 249-258.
[8] 刘谢香,常汝镇,关荣霞,邱丽娟. 大豆出苗期耐盐性鉴定方法建立及耐盐种质筛选[J]. 作物学报, 2020, 46(01): 1-8.
[9] 王存虎,刘东,许锐能,杨永庆,廖红. 大豆叶柄角的QTL定位分析[J]. 作物学报, 2020, 46(01): 9-19.
[10] 柯丹霞,彭昆鹏. 利用酵母双杂交系统筛选大豆结瘤因子受体NFR1α的互作蛋白[J]. 作物学报, 2020, 46(01): 31-39.
[11] 王艳花,谢玲,杨博,曹艳茹,李加纳. 甘蓝型油菜开花相关基因的鉴定及进化与表达分析[J]. 作物学报, 2019, 45(8): 1137-1145.
[12] 陈影,张晟瑞,王岚,王连铮,李斌,孙君明. 野生和栽培大豆种质油脂组成特点及其与演化的关系[J]. 作物学报, 2019, 45(7): 1038-1049.
[13] 侯智红,吴艳,程群,董利东,芦思佳,南海洋,甘卓然,刘宝辉. 利用CRISPR/Cas9技术创制大豆高油酸突变系[J]. 作物学报, 2019, 45(6): 839-847.
[14] 张小芳,董秋平,乔潇,乔亚科,王冰冰,张锴,李桂兰. 基于Cre/loxP系统的无筛选标记转耐低磷转录因子GmPTF1大豆种质创制与分析[J]. 作物学报, 2019, 45(5): 683-692.
[15] 任永福,陈国鹏,蒲甜,陈诚,曾瑾汐,彭霄,马艳玮,杨文钰,王小春. 玉米-大豆带状种植中套作高光效玉米窄行穂位叶光合特性对弱光胁迫的响应[J]. 作物学报, 2019, 45(5): 728-739.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清;李阳生;吴福顺;廖江林;李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[4] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[5] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[6] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[7] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[8] 秦恩华;杨兰芳. 烤烟苗期含硒量和根际硒形态的研究[J]. 作物学报, 2008, 34(03): 506 -512 .
[9] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[10] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .