欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (11): 1977-1987.doi: 10.3724/SP.J.1006.2012.01977

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

国家大豆品种区域试验对照品种的生育期组归属

吴存祥1,2,李继存1,4,沙爱华3,曾海燕1,孙石1,杨光明1,周新安3,常汝镇1,年海2,*,韩天富1,*   

  1. 1中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程, 北京100081; 2华南农业大学农学院, 广东广州 510642; 3中国农业科学院油料作物研究所, 湖北武汉 430062; 4济宁市农业科学研究院, 山东济宁 272031
  • 收稿日期:2011-10-30 修回日期:2012-07-05 出版日期:2012-11-12 网络出版日期:2012-09-10
  • 通讯作者: 韩天富, E-mail: hantf@mail.caas.net.cn, Tel: 010-82105875; 年海, E-mail: hnian@scau.edu.cn, Tel: 020-85280202
  • 基金资助:

    本研究由国家现代农业产业技术体系建设专项(CARS-04)和国家公益性行业(农业)科研专项(3-4)资助。

Maturity Group Classification of Check Varieties in National Soybean Uniform Trials of China

WU Cun-Xiang1,2, LI Ji-Cun1,4, SHA Ai-Hua3, ZENG Hai-Yan1, SUN Shi1, YANG Guang-Ming1, ZHOU Xin-An3, CHANG Ru-Zhen1, NIAN Hai2,*,HAN Tian-Fu1,*   

  1. 1National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2College of Agriculture, South China Agriculture University, Guangzhou 510642, China; 3 Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; 4 Jining Agricultural Science Institute, Jining 272031, China
  • Received:2011-10-30 Revised:2012-07-05 Published:2012-11-12 Published online:2012-09-10
  • Contact: 韩天富, E-mail: hantf@mail.caas.net.cn, Tel: 010-82105875; 年海, E-mail: hnian@scau.edu.cn, Tel: 020-85280202

摘要:

以38个分属MG000~MGVIII的北美大豆生育期组标准品种的生育期表现为参考, 通过多点对比试验, 对来自16个试验组的国家大豆品种区域试验19个对照品种进行生育期组鉴定与划分。所有品种均在北京、武汉两地春播, 并选用部分代表性品种在18个国家大豆品种区域试验点进行补充试验。结果表明, 国家大豆品种区域试验对照品种的生育期组介于MG0~MGVI之间。不同区域的对照品种可归属相同的生育期组。北方春大豆区晚熟组、西北春大豆区、黄淮海夏大豆区及西南山区春大豆区的对照品种均属MGIII;长江流域春大豆区、热带亚热带夏大豆区对照品种属MGV或MGVI。热带亚热带春大豆区2个对照品种福豆301和泉豆7号所在生育期组差异较大, 分别归属MGII和MGIV。根据生育期组并考虑其他因素, 建议将黄淮海夏大豆品种区域试验组由目前3个组以黄河为界划分为2个组, 并对南方部分试验组进行调整。北方春大豆晚熟组和西北春大豆区对照品种尽管生育期组相当, 但因品种抗旱性要求不同, 建议分别设置区域试验。

关键词: 大豆, 国家区域试验, 对照品种, 生育期组

Abstract:

Maturity Group (MG) is a widely-used system for soybean varieties classification in the world. However, it has not been adopted yet in China. In the current studies, we identified the MG catagories for 19 check varieties from the National Soybean Uniform Trials of China by comparing the check varieties with 38 MG standard varieties from the North America, which covered MG000–MGVIII. The check varieties from 16 trial groups represented most of the released soybean varieties in China. All standard and check varieties were sown in spring of Beijing and Wuhan, and the supplementary tests using local varieties were conducted in other 18 sites across the country. The results showed that the MGs of check varieties in the National Soybean Uniform Trials ranged from MG0 to MGVI. Some varieties from different trial groups could be classified into the same MGs, for example, MGIII included the varieties from the Late Group of the Northern Spring Planting Soybean Region, Northwest Spring Planting Soybean Region, all three (north, mid and south) zones of Huanghuaihai Summer Planting Soybean Region, and Southwest Mountainous Spring Planting Soybean Region; the varieties from Yangtze River Spring Planting Soybean Region and the Tropical and Subtropical Summer Planting Soybean Regions were classified into MGV and MGVI. Fudou 301 and Quandou 7, check vrieties from the Tropical and Subtropical Spring Planting Soybean Regions, belonged to MGII and MGIV, respectively. Based on the MG classification and other factors, the authors suggested that the Huanghuaihai Summer Planting Soybean Region can be changed to two (north and south) zones from the current three (north, mid, and south) zones, and the regionization of National Soybean Uniform trials in South China should also be modified. Late Maturity Group of the Northern Spring Planting Soybean Region and the Northwest Spring Planting Soybean Region, both belong to MGIII, should be separated because they are different ecotypes in drought tolerance. The results of this experiment pave the way for establishing the MG system based on biological identities of varieties in order to classify soybean varieties and regionalize the soybean production regions in China.

Key words: Soybean, Uniform trial, Check variety, Maturity Group

[1]Wang J-L(王金陵). Soybean ecotypes and soybean cultivation and breeding. Sci Agric Sin (中国农业科学), 1961, (1): 24–27 (in Chinese)



[2]Wang J-L(王金陵), Wu Y-X(武镛祥), Wu H-L(吴和礼), Sun S-C(孙善澄). Analysis on photoperiod ecotypes of cultivated soybeans from different lantitude regions of China. Acta Agric Sin (农业学报), 1956, 7(2): 169–180 (in Chinese)



[3]Wang J-L(王金陵). On the ecological characteristics and germplasm resources in soybean. Oil Crops China (中国油料), 1981, (1): 1–9 (in Chinese)



[4]Ren Q-X(任全兴), Gai J-Y(盖钧镒), Ma Y-H(马育华). A study on the ecological properties of the growth periods of the Chinese soybean varieties. Sci Agric Sin (中国农业科学), 1987: 20(5): 23–28 (in Chinese with English abstract)



[5]Wang G-X(王国勋), Luo X-H(罗学华), Li Y-H(李友华). Discussion about the ecological type of duration and it uses in introduction of soybean (Soja max L.) in China. Soybean Sci (大豆科学), 1982, 1(1): 33–40 (in Chinese with English abstract)



[6]Bu M-H(卜慕华), Pan T-F(潘铁夫). A study on the regionalization of soybean producing area in China. Soybean Sci (大豆科学), 1982, 1(2): 105–121 (in Chinese with English abstract)



[7]Hao G(郝耕), Chen X-J(陈杏娟), Bu M-H(卜慕华). Classification of the Chinese soybean cltivars into maturity group. Acta Agron Sin (作物学报), 1992, 18(4): 275–281 (in Chinese with English abstract)



[8]Ning H-L(宁海龙), Wang J-L(王金陵), Li W-B(李文滨). Soybean Ecotypes. In: Wang L-Z(王连铮), Guo Q-Y(郭庆元), eds. Contemporary Soybean Research in China. Beijing: Jindun Press, 2007. pp 63–67 (in Chinese)



[9]Hartwig E E. Growth and reproduction characteristics of soybean grown under short-day conditions. Crop Sci, 1970, 12: 47–53



[10]Zhang L X, Kyei-Boahen S, Zhang J, Zhang M H, Freeland T B, Watson C E Jr, Liu X M. Modifications of optimum adaptation zones for soybean maturity groups in the USA. Crop Manag, 2007, doi:10.1094/CM-2007-0927-01-RS



[11]Zhang L, Chen Y, Wu C, Han T. Comparison of soybean (Glycine max) variety trial systems and procedures in the USA and China. Plant Manag, 2010, doi:10.1094/CM-2010-0405-01-RV



[12]Gai J-Y(盖钧镒), Wang Y-S(汪越胜), Zhang M-C(张孟臣), Wang J-A(王继安), Chang R-Z(常汝镇). Studies on the classification of maturity groups of soybeans in China. Acta Agron Sin (作物学报), 2001, 27(3): 286–292 (in Chinese with English abstract)



[13]Chang R-Z(常汝镇), Li F-S(李福山), Ma D-Q(马德泉). Study on soybean variety introduction laws: II. Performances of US varieties grown in China. Oil Crops China (中国油料), 1981, (1): 33–42 (in Chinese)



[14]Fehr W R, Caviness C E. Stages of Soybean Development. Special Report 80, Cooperative Extension Service, Agriculture and Home Economic Experiment Station. Ames, Iowa: Iowa State University, 1977. pp 1–11



[15]Tang Q-Y(唐启义). DPS Data Processing System—Experimental Design, Statistical Analysis and Data Mining(Second Edition)(DPS数据处理系统——实验设计、统计分析及数据挖掘). Beijing: Science Press, 2010 (in Chinese)



[16]Wang Y-S(汪越胜), Gai J-Y(盖钧镒). Geographical distribution of the maturity groups of spring sowing soybeans from China. Chin J Oil Crop Sci (中国油料作物学报), 1999, 21(3): 23–26 (in Chinese with English abstract)



[17]Wang Y-S(汪越胜), Gai J-Y(盖钧镒). The distribution of maturity groups of soybean varieties from various proviences in China. Crop Germplasm Resour (作物品种资源), 1999, (4): 5–6 (in Chinese)



[18]Wang Y-S(汪越胜), Chen D-S(陈冬生), Ma H-H(马宏惠). Study on relation between response to photo-temperature and response to photoperiod of soybeans from china. J Anhui Norm Univ (安徽师范大学学报), 2000, 23(3): 231–233 (in Chinese with English abstract)



[19]Han T-F(韩天富), Gai J-Y(盖钧镒), Chen F-Y(陈风云), Qiu J-X(邱家驯). Photoperiod response and agronomic characters of soybean varieties with different growth period structures. Acta Agron Sin (作物学报), 1998, 24(5): 550–557 (in Chinese with English abstract)



[20]Zhang G-D(张国栋). Procedure and method for the soybean uniform tests in the United States. Soybean Sci (大豆科学), 1995, 14(2): 174–179 (in Chinese)

[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
[15] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!