欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (11): 1988-1996.doi: 10.3724/SP.J.1006.2012.01988

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

一个水稻叶片衰老上调表达基因的初步生物学功能分析

孙波1,周勇1,林拥军1,*   

  1. 1华中农业大学作物遗传改良国家重点实验室, 湖北武汉 430070
  • 收稿日期:2012-04-10 修回日期:2012-07-05 出版日期:2012-11-12 网络出版日期:2012-09-10
  • 通讯作者: 林拥军, E-mail: yongjunlin@mail.hzau.edu.cn, Tel: 027-87281719
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2012AA10A303)资助。

Preliminary Functional Analysis of a Rice Leaf Senescence Up-Regulated Gene

SUN Bo,ZHOU Yong,LIN Yong-Jun*   

  1. National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
  • Received:2012-04-10 Revised:2012-07-05 Published:2012-11-12 Published online:2012-09-10
  • Contact: 林拥军, E-mail: yongjunlin@mail.hzau.edu.cn, Tel: 027-87281719

摘要:

叶片衰老是其发育的最后阶段。通过对水稻叶片衰老机制的研究, 有计划地控制或延缓衰老的发生具有重要的理论价值和实践意义。本研究基于基因表达芯片数据挑选了一个叶片衰老上调表达候选基因A12 (LOC_Os 07g41230)。A12基因在水稻全生育期表达谱数据库中的表达模式及在水稻抽穗后不同时期剑叶中的表达量检测结果进一步证明其确为叶片衰老上调表达基因。生物信息学预测A12基因启动子区域存在大量的与激素诱导相关的顺式作用元件。实时定量PCR结果显示A12基因对茉莉酸(JA)和激动素(KT)的诱导有明显的响应, 但是对油菜素内酯(BR)、赤霉素(GA)、生长素(IAA)及脱落酸(ABA)的诱导则无明显响应。对A12基因对应的水稻T-DNA插入突变体观察发现, A12基因的突变会导致剑叶早衰。这些结果为进一步深入研究A12基因的生物学功能打下了基础。

关键词: 水稻, 叶片衰老相关基因, 功能分析

Abstract:

Leaf senescence is the last stage in leaf development. It has important theoretical and practical significance to study the mechanism on rice leaf senescence and the find out a way to purposefully control or delay leaf senececne. In this study, we identified a rice leaf senescence up-regulated gene A12 (LOC_Os 12g33120) according to the leaf senescence gene expression microarray data. The analysis from the rice gene expression profile database in whole growth period and qRT-PCR result of A12 expression in flag leaves at different stages after heading further confirmed that A12 was a leaf senescence up-regulated gene. Bioinformatic analysis found many phytohormone-responsive cis-acting elements in A12 promoter. Quantitative real-time PCR analysis indicated the A12 gene were up-regulated by JA and KT treatments, but not apparently induced by BR, GA, IAA, and ABA. Research on the rice T-DNA insertion mutant of A12 found that loss of function of this gene led to premature senescence of flag leaf. These results lay a foundation for the further functional analysis of this gene.

Key words: Rice, Leaf senescence-associated gene, Function analysis

[1]Quirino B F, Noh Y S, Himelblau E, Amasino R M. Molecular aspects of leaf senescence. Trends Plant Sci, 2000, 5: 278-282



[2]Yoshida S. Molecular regulation of leaf senescence. Curr Opin Plant Biol, 2003, 6: 79-84



[3]Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim P O, Nam H G, Lin J F, Wu S H, Swidzinski J, Ishizaki K. Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J, 2005, 42: 567-585



[4]Lim P O, Kim H J, Nam H G. Leaf senescence. Annu Rev Plant Biol, 2007, 58: 115-136



[5]Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T, Makino A. Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol, 2009, 149: 885-893



[6]Pulido A, Laufs P. Co-ordination of developmental processes by small RNAs during leaf development. J Exp Bot, 2010, 61: 1277-1291



[7]Shan X Y, Wang J, Chua L L, Jiang D, Peng W, Xie D X. The role of Arabidopsis Rubisco activase in jasmonate-induced leaf senescence. Plant Physiol, 2011, 155:751-764



[8]Buchanan-Wollaston V. The molecular biology of leaf senescence. J Exp Bot, 1997, 307: 181-199



[9]Nooden L D, Guiamet J J, John I. Senescence mechanisms. Physiol Plant, 1997, 101: 746-753



[10]Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D. The molecular analysis of leaf senescence-a genomics approach. Plant Biotechnol J, 2003, 1: 3-22



[11]Gan S ed. Senescence Processes in Plants. Annual Plant Reviews, Vol. 26. Oxford: Blackwell Publishing Ltd. 2007



[12]Yen C H, Yang C H. Evidence for programmed cell death during leaf senescence in plants. Plant Cell Physiol, 1998, 39: 922-927



[13]Ellis C M, Nagpal P, Young J C, Hagen G, Guilfoyle T J, Reed J W. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development, 2005, 132: 4563-4574



[14]Guo Y, Gan S. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J, 2006, 46: 601-612



[15]Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science, 2006, 314: 1298-1301



[16]Sato Y, Morita R, Nishimura M, Yamaguchi H, Kusaba M. Mendel’s green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway. Proc Natl Acad Sci USA, 2007, 104: 14169-14174



[17]Schelbert S, Aubry S, Burla B, Agne B, Kessler F, Krupinska K, Hörtensteiner S. Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. Plant Cell, 2009, 21:767-785



[18]Sharabi-Schwager M, Lers A, Samach A, Guy C L, Porat R. Overexpression of the CBF2 transcriptional activator in Arabidopsis delays leaf senescence and extends plant longevity. J Exp Bot, 2010, 61: 261-273



[19]Xiao S, Gao W, Chen Q F, Chan S W, Zheng S X, Ma J Y, Wang M F, Welti R, Chye M L. Overexpression of Arabidopsis acyl-CoA binding protein ACBP3 promotes starvation-induced and age-dependent leaf senescence. Plant Cell, 2010, 22: 1463-1482



[20]Balazadeh S, Kwasniewski M, Caldana C, Mehrnia M, Zanor M L, Xue G P, Mueller-Roeber B. ORS1, an H2O2-responsive NAC transcription factor, controls senescence in Arabidopsis thaliana. Mol Plant, 2011, 4: 346-360



[21]Besseau S, Li J, Palva E T. WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. J Exp Bot, 2012, DOI:10.1093/jxb/err450



[22]Zhang Q F. Strategies for developing green super rice. Proc Natl Acad Sci USA, 2007, 104: 16402-16409



[23]National Institute of Agrobiological Sciences Rice Full-Length cDNA Project Team. Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science, 2003, 301: 376-379



[24]Xie K B, Zhang J W, Xiang Y, Feng Q, Han B, Chu Z H, Wang S P, Zhang Q F, Xiong L Z. Isolation and annotation of 10828 putative full length cDNAs from indica rice. Sci China (Series C-Life Sci), 2005, 48: 445-451



[25]Wu C, Li X, Yuan W, Chen G, Kilian A, Li J, Xu C, Li X, Zhou D X, Wang S, Zhang Q. Development of enhancer trap lines for functional analysis of the rice genome. Plant J, 2003, 35:418-427



[26]Jeong D H, An S, Park S, Kang H G, Park G G, Kim S R, Sim J, Kim Y O, Kim M K, Kim S R, Kim J, Shin M, Jung M, An G. Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J, 2006, 45:123-132



[27]Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of boundaries of the T-DNA. Plant J , 1994, 6 :271-282



[28]Lin Y J, Zhang Q F. Optimizing the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep, 2005, 23: 540-547



[29]Liu L, Zhou Y, Zhou G, Ye R J, Zhao L N, Li X H, Lin Y J. Identification of early senescence-associated genes in rice flag leaves. Plant Mol Biol, 2008, 67: 37-55



[30]Wang L, Xie W B, Chen Y, Tang W J, Yang J Y, Ye R J, Liu L, Lin Y J, Xu C G, Xiao J H, Zhang Q F. A dynamic gene expression atlas covering the entire life cycle of rice. Plant J, 2010, 61:752-766



[31]Cha K W, Lee Y J, Koh H J, Lee B M, Nam Y W, Paek N C. Isolation, characterization, and mapping of the stay green mutant in rice. Theor Appl Genet, 2002, 104: 526-532



[32]Lee R H, Lin M C, Chen S C. A novel alkaline alpha-galactosidase gene is involved in rice leaf senescence. Plant Mol Biol, 2004, 55: 281-295



[33]Ansari M I, Lee R H, Chen S C G. A novel senescence-associated gene encoding γ-aminobutyric acid (GABA): pyruvate transaminase is upregulated during rice leaf senescence. Physiol Plant, 2005, 123: 1-8



[34]Kong Z, Li M, Yang W, Xu W, Xue Y. A novel nuclear-localized CCCH-Type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice. Plant Physiol, 2006, 141: 1376-1388



[35]Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell, 2007, 19: 1362-1375



[36]Jiang H, Li M, Liang N, Yan H, Wei Y, Xu X, Liu J, Xu Z, Chen F, Wu G. Molecular cloning and function analysis of the stay green gene in rice. Plant J, 2007, 52: 197-209



[37]Park S Y, Yu J W, Park J S, Li J, Yoo S C, Lee N Y, Lee S K, Jeong S W, Seo H S, Koh H J. The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell, 2007, 19: 1649-1664



[38]Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29-40



[39]Zhang W, Zhou X, Wen C K. Modulation of ethylene responses by OsRTH1 overexpression reveals the biological significance of ethylene in rice seedling growth and development. J Exp Bot, 2012, 63: 4151-4164



[40]Jiao B B, Wang J Y, Zhu X D, Zeng L J, Li Q, He Z H. A novel protein RLS1 with NB-ARM domains is involved in chloroplast degradation during leaf senescence in rice. Mol Plant, 2012, 5: 205-217



[41]Lu L X, Zhou F, Zhou Y, Fan X L, Ye S F, Wang L, Chen H, Lin Y J. Expression profile analysis of the polygalacturonase-inhibiting protein genes in rice and their responses to phytohormones and fungal infection. Plant Cell Rep, 2012, 31: 1173-1187



[42]Taiz L, Zeigen E. Plant Physiology (Fourth Edition). Beijing: Science Press, 2009. pp 340-341



[43]Gepstein S, Sabehi G, Carp M J, Hajouj T, Nesher M F, Yariv I, Dor C, Bassani M. Large-scale identification of leaf senescence-associated genes. Plant J, 2003, 36: 629-642



[44]Andersson A, Keskitalo J, Sjodin A, Bhalerao R, Sterky F, Wissel K, Tandre K, Aspeborg H, Moyle R, Ohmiya Y. A transcriptional timetable of autumn senescence. Genome Biol, 2004, 5:R24



[45]Lin J F, Wu S H. Molecular events in senescing Arabidopsis leaves. Plant J, 2004, 39: 612-628



[46]Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim P O, Nam H G, Lin J F, Wu S H, Swidzinski J, Ishizaki K. Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J, 2005, 42: 567-585



[47]van der Graaff E, Schwacke R, Schneider A, Desimone M, Flugge U I, Kunze R. Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol, 2006, 141: 776-792



[48]Ueda J, Kato J. Identification of a senescence-promoting substance from wormwood (Artemisia absinthum L.). Plant Physiol, 1980, 66:246-249



[49]He Y H, Fukushige H, Hildebrand D F, Gan S S. Evidence supporting a role of jamonic acid in Arabidopsis leaf senescence. Plant Physiol, 2002, 128:876-884



[50]Gan S, Amasino R M. Inhibition of leaf senescence by autoregulated production of cytokinin. Science, 1995, 270: 1966-1967



[51]Matthews R. Disease symptoms and effects on metabolism. Plant Virol, 1991, 380-422



[52]Huynh L N, VanToai T, Streeter J, Banowetz G. Regulation of flooding tolerance of SAG12: ipt Arabidopsis plants by cytokinin. J Exp Bot, 2005, 56: 1397-1407



[53]Calderini O, Bovone T, Scotti C, Pupilli F, Piano E, Arcioni S. Delay of leaf senescence in Medicago sativa transformed with the ipt gene controlled by the senescence-specific promoter SAG12. Plant Cell Rep, 2007, 26: 611-615

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!