欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (11): 1997-2006.doi: 10.3724/SP.J.1006.2012.01997

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦淀粉糊化特性与DArT标记的关联分析

于海霞,田纪春*   

  1. 山东农业大学作物生物学国家重点实验室 / 山东省作物生物学重点实验室, 山东泰安 271018
  • 收稿日期:2012-03-19 修回日期:2012-07-05 出版日期:2012-11-12 网络出版日期:2012-09-10
  • 通讯作者: 田纪春, E-mail: jctian@sdau.edu.cn, Tel: 0538-8242040
  • 基金资助:

    本研究由国家自然科学基金项目(30971764A)和国家转基因生物新品种培育重大专项(2011ZX08002-003)资助。

Association between Starch Pasting Properties and DArT Markers in Common Wheat

YU Hai-Xia,TIAN Ji-Chun*   

  1. State Key Laboratory of Crop Biology / Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
  • Received:2012-03-19 Revised:2012-07-05 Published:2012-11-12 Published online:2012-09-10
  • Contact: 田纪春, E-mail: jctian@sdau.edu.cn, Tel: 0538-8242040

摘要:

小麦淀粉糊化特性是评价小麦加工品质和品质育种的重要指标之一。对不同年份和地点5个环境生长的矮孟牛姊妹系及其衍生系共109份材料的RVA参数(峰值黏度、低谷黏度、稀澥值、最终黏度、回生值和糊化温度)观测, 并利用混合线性模型分析其与覆盖小麦全基因组的971个DArT (Diversity Array Technology)标记的关联性。结果表明, 分布于19条染色体上的70个DArT标记与上述RVA参数显著关联(P≤0.001), R2值范围是0.2%~23.3%。2A、2B和2D染色体上标记与多个RVA参数都有关联, 且效应值较大。这为淀粉湖化特性的分子标记辅助选择提供了重要的信息。

关键词: 小麦, 淀粉糊化特性, 矮孟牛, 关联分析, DArT标记

Abstract:

Starch pasting properties are important indicators in the evaluation of processing quality and quality breeding in wheat (Triticum aestivum L.), which are commonly represented by RVA parameters including peak viscosity, trough viscosity, breakdown, final viscosity, setback, and pasting temperature. These RVA parameters of Aimengniu and its derived progenies planted in five environments in two locations from 2007 to 2010 were determined, and the association between the RVA parameters and 971 DArT (Diversity Array Technology) markers were analyzed using mixed linear model. Seventy DArT markers distributed on 19 chromosomes were significantly associated with the six RVA parameters (P ≤ 0.001, R2 = 0.2–23.3%). The markers on chromosomes 2A, 2B, and 2D were identified to have large effects and associated with several RVA parameters. This result provides an important information for marker-assisted selection on starch pasting properties in wheat.

Key words: Wheat, RVA parameters, Aimengniu, Association mapping, DArT markers

[1]Panozzo J F, McCormick K M. The Rapid Viscoity Analyser as a method of testing for noodle quality in a wheat breeding program. J Cereal Sci, 1993, 17: 25-32



[2]Liu J J, He Z H, Zhao Z D, Pena R T, Rajaram S. Wheat quality traits and quality parameters of cooked dry white noodle. Euphytica, 2003, 131: 147-154



[3]Yao D-N(姚大年), Li B-Y(李保云), Liang R-Q(梁荣奇), Liu G-T(刘广田). Effects of wheat genotypes and environments to starch properties and noodle quality. J China Agric Univ (中国农业大学学报), 2000, 5(1): 63-68 (in Chinese with English abstract)



[4]Li J-G(李继刚), Liang R-Q(梁荣奇), Zhang Y-Q(张义荣), Li B-Y(李保云), Liu G-T(刘广田). Production of waxy common wheat and its starch properties. J Triticeae Crops (麦类作物学报), 2001, 21(2): 10-13 (in Chinese with English abstract)



[5]Zhao H(赵华), Li L-H(李立会), Yang X-M(杨欣明), Li X-Q(李秀全), Harold C. Study on physicochemical properties of starches from wheat- Agropyron-cristatum alien derivative lines. J Qinghai Univ (青海大学学报), 2000, 18(4): 15-21 (in Chinese with English abstract)



[6]Li T(李韬), Xu C-W(徐辰武), Hu Z-Q(胡治球), Li Y-L(李玉兰), Sun C-S(孙长森), Gu S-L(顾世梁). RVA pasting properties of wheat hybrid and the relations with their parents. J Triticeae Crops (麦类作物学报), 2003, 23(1): 17-20 (in Chinese with English abstract)



[7]Li T(李韬), Xu C-W(徐辰武), Hu Z-Q(胡治球), Sun C-S(孙长森), Li G(李刚), Gu S-L(顾世梁). Genetic potentials of wheat flour RVA pasting characteristics and cluster analysis. Life Sci Res (生命科学研究), 2002, 6(4): 288-292 (in Chinese with English abstract)



[8]Udall J A, Souza E, Anderson J, Sorrells M E, Zemtra R S. Quantitative trait loci for flour viscosity in winter wheat. Crop Sci, 1999, 39: 238-242



[9]Kuchel H, Langridge P, Mosionek L, Williams K, Jefferies S P. The genetic control of milling yield, dough rheology and baking quality of wheat. Theor Appl Genet, 2006, 112: 1487-1495



[10]Batey I L, Hayden M J, Cai S, Sharp P J, Cornish G B, Morell M K, Appels R. Genetic mapping of commercially significant starch characterstics in wheat crosses. Aust J Agric Res, 2001, 52: 1287-1296



[11]Wu Y-P(吴云鹏), Zhang Y-L(张业伦), Xiao Y-G(肖永贵), Yan J(阎俊), Zhang Y(张勇), Zhang X-K(张晓科), Zhang L-M(张利民), Xia X-C(夏先春), He Z-H(何中虎). QTL mapping for important quality traits in common wheat. Sci Agric Sin (中国农业科学), 2008, 41(2): 331-339 (in Chinese with English abstract)



[12]Flint-Garcia S A, Thornsberry J M, Buckler E S. Structure of linkage disequilibrium in plants. Annu Rev Plant Biol, 2003, 54: 357-374



[13]Zhu C, Gore M, Buckler E S, Yu J. Status and prospects of association mapping in plants. Plant Genome, 2008, 1: 5-20



[14]Ingvarsson P K, Nathaniel R S. Association genetics of complex traits in plants. New Phytol, 2011, 189: 909-922



[15]Huang X H, Wei X H, Sang T, Zhao Q, Feng Q, Zhao Y, Li C Y, Zhu C Y, Lu T T, Zhang Z Z, Li M, Fan D L, Guo Y L, Wang A, Wang L, Deng L W, Li W J, Lu Q, Weng Q J, Liu K Y, Huang T, Zhou T Y, Jing Y F, Li W, Lin Z, Buckler E S, Qian Q, Zhang Q F, Li J Y, Han B. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet, 2010, 42: 961-967



[16]Breseghello F, Sorrells M E. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics, 2005, 172: 1165-1177



[17]Tian F, Bradbury P J, Brown P J, Hung H, Sun Q, Flint-Garcia S, Rocheford T R, McMullen M D, Holland J B, Buckler E S. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet, 2011, 43: 159-162



[18]Maccaferri M, Sanguineti M C, Demontis A, El-Ahmed A, Moral G, Maalouf F, Nachit M, Nerallah N, Ouabbou H, Rhouma S, Royo C, Villegas N, Tuberosa R. Association mapping in durum wheat grown across a broad range of water regimes. J Exp Bot, 2011, 62: 409-438



[19]Yu H-X(于海霞), Xiao J(肖静), Tian J-C(田纪春). Genetic dissection of milestone parent Aimengniu and its derivatives. Sci Agric Sin (中国农业科学), 2012, 45(2): 199-207 (in Chinese with English abstract)



[20]Akbari M, Wenzl P, Caig V, Carling J, Xia L. Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hoyden M J, Howes N, Sharp P, Vaughan P, Rathmell B, Hutter E, Kilian A. Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet, 2006, 113: 1409-1420



[21]Semagn K, Bjornstad H, Skinnes A G, Marφy Y, Tarkegne, William M. Distribution of DArT, AFLP and SSR markers in a genetic linkage map of a double haploid hexaploid wheat population. Genome, 2006, 49: 545-555



[22]Lillemo M, Asalf B, Singh R P, Huerta-Espino J, Chen X M, He Z H, Biornstad A. The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet, 2008, 116: 1155-1166



[23]Mantovani P, Maccaferri M, Sanguineti M C, Tuberosa R, Catizone I, Wenzl P, Thomson B, Carling J, Huttner E, DeAmbrogio E, Kilian A. An integrated DArT-SSR linkage map of durum wheat. Mol Breed, 2008, 22: 629-648



[24]Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A. Diversity Arrays Technology (DArT) for whole genome profiling of barley. Proc Natl Acad Sci USA, 2004, 101: 9915-9920



[25]Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P, Korol A, Michalak M, Kianian S, Spielmeyer W, Lagudan E, Somers D, Kilian A, Alaux M, Vautrin S, Berges H, Eversole K, Appels R, Safar J, Simkova H, Dolezel J, Bernard M, Feuillet C. A physical map of the 1-Gigabase bread wheat chromosome 3B. Science, 2008, 322: 101-104



[26]Voorrips R E. MapChart, software for the graphical presentation of linkage maps and QTLs. J Hered, 2002, 93: 77-78



[27]Pritchard JK, Stephens M, Donnelly P. Inference of population structure from multilocus genotype data. Genetics, 2000, 155: 945-959



[28]Comadran J, Thomas W T B, van Eeuwijk F A, Caccarelli S, Grando S, Stanca A M, Pecchioni N, Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat P R, Roose M L, Svensson J T, Stein N, Varhney R K, Marshall D F, Graner A, Close T J, Waugh R. Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci USA, 2006, 103: 18656-18661



[29]Rahman S, Li Z, Batey I, Cochrane M P, Appels R, Morell M. Genetic alteration of starch functionality in wheat. J Cereal Sci, 2000, 31: 91-110



[30]Clark J R, Robertson M, Anisworth C C. Nucleotide sequence of a wheat (Triticum aestivum L.) cDNA clone encoding the wary protein. Plant Mol Biol, 1991, 16: 1099-1101



[31]Ainsworth C, Tarvis M, Clark J. Isolation and analysis of cDNA clone encoding the small subunit of ADP-glucose pyrophosphorylase from wheat. Plant Mol Biol, 1993, 23: 23-33



[32]Li Z Y, Mouille G, Kosar-Hashemi B, Rahman S, Clarke B, Gale K R, Appels R, Morell M K. The structure and expression of wheat starch synthase III gene. Motif in the expressed gene define the line age of the starch starch synthase III gene family. Plant Physiol, 2000, 123: 612-624



[33]Bordes J, Ravel C, Gouis J L, Lapierre A, Charmet G, Balfourier F. Use of a global wheat core collection for association analysis of flour and dough quality traits. J Cereal Sci, 2011, 54: 137-147



[34]Yu J, Pressoir G, Briggs W H, Bi I V, Yamasaki M, Doebley J, McMullen M D, Gaut B S, Nielsen D M, Holland J B, Kresovich S, Buckler E S. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006, 38: 203-208

[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[3] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[4] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[5] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[6] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[7] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[8] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[11] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[12] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[13] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[14] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[15] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!