欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (02): 169-176.doi: 10.3724/SP.J.1006.2018.00169

• • 上一篇    下一篇

水稻花器官数目突变体mf2的鉴定和基因定位

严贤诚**, 陈立凯**, 罗玉花, 罗文龙, 王慧, 郭涛*(), 陈志强*()   

  1. 华南农业大学国家植物航天育种工程技术研究中心, 广东广州 510642;
  • 收稿日期:2017-05-27 接受日期:2017-09-10 出版日期:2018-02-12 网络出版日期:2017-10-27
  • 通讯作者: 严贤诚,陈立凯,郭涛,陈志强
  • 作者简介:

    第一作者联系方式: 严贤诚, E-mail: 18659186232@163.com; 陈立凯, E-mail: leeking1113@163.com; ** 同等贡献(Contributed equally to this work)

  • 基金资助:
    本研究由国家重点研发计划项目(2016YFD0102102), 国家现代农业产业技术体系建设专项(CARS-01-12)和广东省应用型研发项目(2015B020231011)资助

Identification and Gene Mapping of a Floral Organ Number Mutant mf2 in Rice (Oryza sativa)

Xian-Cheng YAN**, Li-Kai CHEN**, Yu-Hua LUO, Wen-Long LUO, Hui WANG, Tao GUO*(), Zhi-Qiang CHEN*()   

  1. National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, Guangzhou, China;
  • Received:2017-05-27 Accepted:2017-09-10 Published:2018-02-12 Published online:2017-10-27
  • Contact: Xian-Cheng YAN,Li-Kai CHEN,Tao GUO,Zhi-Qiang CHEN
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (2016YFD0102102), the China Agricultural Research System (CARS-01-12), and the Applied Research and Development Funds in Guangdong (2015B020231011).

摘要:

水稻的花器官发育影响着水稻的产量与品质。本研究通过12C重离子诱变航恢7号获得一个水稻花器官突变体multi-floret 2 (mf2), 其稃片、浆片、雄蕊、雌蕊增多, 多数小穗内具2~3朵类似小花。mf2内外稃不能很好勾合, 而且形状和维管束的数目都产生了一定程度的变化。电镜扫描幼穗发现花器官的变异在幼穗分化期的各花器官原基分化时就已形成。另外, 该突变体的抽穗期推迟, 株高降低, 穗数增多, 表明其营养生长也受到一定的影响。遗传分析表明mf2突变体表型受单隐性核基因控制。利用SSR、InDel分子标记将MF2定位于第1染色体的标记SSR39108和InD39210之间, 区间大小约为102 kb。

关键词: 水稻, 重离子诱变, 花器官变异, 基因定位

Abstract:

A rice floral organ mutant mf2 (multi-floret 2) was identified from Hanghui 7, an indica restorer line in rice (Oryza sativa L.), which was treated with heavy ion irradiation. The glumes, lodicules, stamens, pistil of the mutant increased, and most of the spikelets had 2-3 flowers. The palea and lemma of mf2 mutant were dehiscent, the shape and number of vascular bundles were different from those of the wild-type. Scanning electron microscope analysis revealed that the flowers variation of mf2 had been formed in the differentiation of the primordium during the spike differentiation stage. The heading date of the mf2 mutant was delayed, the plant height was decreased, but the number of panicles was increased, showing that the vegetative growth of the mutant was also affected. Genetic analysis showed that the mf2 mutant phenotype was controlled by a recessive nuclear gene. There are 321 recessive individuals from the F2 segregation population were used to fine map MF2. Finally, MF2 was located in a 102 kb physical interval between markers SSR39108 and InDel39210 on chromosome 1.

Key words: rice (Oryza sativa L.), heavy ion mutagenesis, floral mutants, gene mapping

表1

野生型和突变体mf2主要农艺性状调查"

材料
Material
抽穗期
Heading period
(d)
株高
Plant height
(cm)
单株穗重
Single plant spike weight (g)
穗数
Panicle number per plant
结实率
Seed-setting rate (%)
千粒重
1000-grain weight (g)
野生型Wild-type 70.62±0.28 104.60±0.90 27.73±0.76 7.33±0.58 86.49±0.45 21.47±0.18
突变体mf2 79.33±2.16* 92.44±1.37** 10.66±1.70** 13.20±0.86** 12.36±1.82** 13.64±0.10**

图1

突变体mf2及其野生型的表型 A: 野生型(左)和突变体mf2 (右)灌浆期植株表型; B: 野生型(下)和突变体mf2 (上)籽粒; C, D: 野生型颖花, D为C去掉内外稃后的形态; E~J: 突变体mf2的颖花, 其中F、H、J分别为E、G、I去掉稃片后的形态。Scale bar=100 mm (A); Scale bars = 1 mm (C~J)。"

图2

mf2突变体小穗小花数和籽粒数所占比例"

图3

突变体mf2及其野生型小穗显微结构 I: 野生型和mf2稃片石蜡切片观察。A: 野生型小穗; B, C: mf2小穗含类稃结构; D: 维管束部分局部放大。箭头表示维管束。II: 野生型和mf2幼穗电镜观察。A, B: 野生型幼穗, 雄蕊原基出现; C, D: mf2幼穗, 雄蕊原基出现, D中具额外的稃片原基(星号表示)。"

表2

mf2突变体遗传分析"

组合
Cross
F1表型
Phenotype of F1
F2表型 Phenotype of F2 χ2(3:1) χ20.05
正常表型Wild type 突变表型Mutant type 总数Total
02428/mf2 野生型 Wild type 357 126 483 0.249 3.84
Francis/mf2 野生型 Wild type 1091 321 1412 3.748

图4

MF2基因的精细定位"

表3

定位MF2所设计的引物序列"

标记
Marker
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
InD38433 AGGAGAAGCTCCCAGTCGTT AATCCAAGTATCCCTTGCAAAC
InD38713 AACAGCAACGGTAACTTTCACA ACGCTTAGGAAGCTATGAGGTG
SSR39108 CATGTCTTGCAAGCTAACCAAA CTATATATGCCACGACGAGCAG
InD39167 GCAAGTAAACCAACCACACGTA CCATCCATCAATCCGAACTACT
InD39210 TTTAAGGGGTTTCTAGCTGCTG ATAGCTTTGGACCTGTTTTGGA
InD39410 TGAACTCAGGCCCAGTTTAGTT TTGAGCCTCCAGTAGTTCCTTC

表4

MF2定位区间内的候选基因"

基因号
Gene ID
位置
Location
基因注释
Description
Os01g67364 39114681-39117532 Ty3-gypsy家族反转录转座子蛋白 Retrotransposon protein, putative, Ty3-gypsy subclass, expressed
Os01g67370 39129736-39134858 表达蛋白 Expressed protein
Os01g67380 39136361-39136861 表达蛋白 Expressed protein
Os01g67390 39136937-39139380 花粉Ole-e-1变应原和扩展蛋白家族的蛋白前体
POEI32-Pollen Ole-e-I allergen and extensin family protein precursor, expressed
Os01g67400 39140444-39140762 假定蛋白 Hypothetical protein
Os01g67410 39141130-39145479 AP2/EREBP转录因子 AP2/EREBP transcription factor BABY BOOM, putative, expressed
Os01g67420 39158153-39165729 脂肪酶 Lipase, putative, expressed
Os01g67430 39177169-39178676 脂肪酶 Lipase, putative, expressed
Os01g67440 39179769-39180065 转座子蛋白 Transposon protein, putative, unclassified, expressed
Os01g67450 39195689-39196972 脂肪酶 Lipase, putative, expressed
[1] Guo S, Sun B, Looi L S, Xu Y, Gan E S, Huang J, Ito T.Co-ordination of flower development through epigenetic regulation in two model species: rice andArabidopsis. Plant Cell Physiol, 2015, 56: 830-842
[2] Yanofsky M F.Floral meristems to floral organs: genes controlling early events in Arabidopsis flower development.Annu Rev Plant Physiol Plant Mol Biol, 1995, 46: 167-188
[3] Fornara F, Marziani G, Mizzi L, Kater M, Colombo L.MADS-box genes controlling flower development in rice.Plant Biol, 2003, 5: 16-22
[4] 田大刚, 刘华清, 苏军, 张礼华, 王锋. 水稻与拟南芥中控制花器官发育MADS-box基因的比较研究进展. 福建农业学报, 2011, 26: 309-320
Tian D G, Liu H Q, Su J, Zhang L H, Wang F.Flower-Development-Controlling MADS-box genes in rice andArabidopsis thaliana. Fujian J Agric Sci, 2011, 36: 309-320 (in Chinese with English abstract)
[5] Yoshida H, Nagato Y.Flower development in rice.J Exp Bot, 2011, 62: 4719-4730
[6] Takahashi M, Nagasawa N, Kitano H, Nagato Y.Panicle phytomer 1 mutations affect the panicle architecture of rice. Theor Appl Genet, 1998, 96: 1050-1056
[7] Kyozuka J, Konishi S, Nemoto K, Izawa T, Shimamoto K.Down-regulation ofRFL, the FLO/LFY homolog of rice, accompanied with panicle branch initiation. Proc Natl Acad Sci USA, 1998, 95: 1979-1982
[8] Jeon J S, Jang S, Lee S, Nam J, Kim C, Lee S H, Chung Y Y, Kim S R, Lee Y H, Cho Y G.Leafy hull sterile 1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell, 2000, 12: 871-884
[9] Chanhong K, Donghoon J, An G H.Molecular cloning and characterization ofOsLRK1 encoding a putative receptor-like protein kinase from Oryza sativa. Plant Sci, 2000, 152: 17-26
[10] Jang S, Lee B, Kim C, Kim S J, Yim J, Han J J, Lee S, Kim S R, An G.TheOsFOR1 gene encodes a polygalacturonase-inhibiting protein (PGIP) that regulates floral organ number in rice. Plant Mol Biol, 2003, 53: 357-369
[11] Suzaki T, Sato M, Ashikari M, Miyoshi M, Nagato Y, Hirano H Y.The geneFLORAL ORGAN NUMBER1 regulates floral meristern size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1. Development, 2004, 131: 5649-5657
[12] Chu H, Qian Q, Liang W, Yin C, Tan H, Yao X, Yuan Z, Yang J, Huang H, Luo D.TheFLORAL ORGAN NUMBER4 gene encoding a putative ortholog of Arabidopsis CLAVATA3 regulates apical meristem size in rice. Plant Physiol, 2006, 142: 1039-1052
[13] Suzaki T, Toriba T, Fujimoto M, Tsutsumi N, Kitano H, Hirano H Y.Conservation and diversification of meristem maintenance mechanism inOryza sativa: function of the FLORAL ORGAN NUMBER2 gene. Plant Cell Physiol, 2006, 47: 1591-1602
[14] Zhao L, Xu S, Chai T, Tai W.OsAP2-1, an AP2-like gene from Oryza sativa, is required for flower development and male fertility. Plant Reprod, 2006, 19: 197-206
[15] Lee D Y, Lee J, Moon S, Park S Y, An G.The rice heterochronic geneSUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem. Plant J, 2007, 49: 64-78
[16] Sun Q, Zhou D X.Rice jmjC domain-containing geneJMJ706 encodes H3K9 demethylase required for floral organ development. Proc Natl Acad Sci USA, 2008, 105: 13679-13684
[17] Li H, Xue D, Gao Z, Yan M, Xu W, Xing Z, Huang D, Qian Q, Xue Y.A putative lipase geneEXTRA GLUME1 regulates both empty-glume fate and spikelet development in rice. Plant J Cell Mol Biol, 2009, 57: 593-605
[18] Xiao H, Tang J, Li Y, Wang W, Li X, Jin L, Xie R, Luo H, Zhao X, Meng Z.STAMENLESS 1, encoding a single C2H2 zinc finger protein, regulates floral organ identity in rice. Plant J, 2009, 59: 789-801
[19] Ren D Y, Li Y F, Wang Z, Xu F F, Guo S, Zhao F M, Sang X C, Ling Y H, He G H.Identification and gene mapping of amulti-floret spikelet 1 (mfsl) mutant associated with spikelet development in rice. J Integr Agric, 2012, 11: 1574-1579
[20] Wang N, Li Y F, Sang X C, Ling Y H, Zhao F M, Yang Z L, He G H.Nonstop glumes (nsg), a novel mutant affects spikelet development in rice. Genes & Genomics, 2013, 35: 149-157
[21] Cai Q, Yuan Z, Chen M, Yin C, Luo Z, Zhao X, Liang W, Hu J, Zhang D.Jasmonic acid regulates spikelet development in rice.Nat Commun, 2014, 5: 3476
[22] Zhang J, Tang W, Huang Y, Niu X, Zhao Y, Han Y, Liu Y.Down-regulation of a LBD-like gene,OsIG1, leads to occurrence of unusual double ovules and developmental abnormalities of various floral organs and megagametophyte in rice. J Exp Bot, 2015, 66: 99-112
[23] Wang H H, Zhang L, Cai Q, Jin Z M, Zhao X X, Huang Q M, Luo Z J, Chen M J, Zhang D B, Yuan Z.OsMADS32 interacts with PI-like proteins and regulates rice flower development. J Integr Plant Biol, 2015, 57: 504-513
[24] Yang C, Ma Y, Li J.The riceYABBY4 gene regulates plant growth and development through modulating the gibberellin pathway. J Exp Bot, 2016, 67: 5545-5556
[25] 李云峰, 杨正林, 凌英华, 王楠, 任德勇, 王增, 何光华. 水稻多小花小穗突变体mf1的鉴定与基因定位. 作物学报, 2011, 37: 280-285
Li Y F, Yang Z L, Ling Y H, Wang N, Ren D Y, Wang Z, He G H.Characterization and gene mapping of a spikelet mutantmf1 in rice. Acta Agron Sin, 2011, 37: 280-285 (in Chinese with English abstract)
[26] Murray M G, Thompson W F.Rapid isolation of high molecular weight plant DNA.Nucl Acids Res, 1980, 8: 4321-4326
[27] Michelmore R W, Paran I, Kesseli R V.Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations.Proc Natl Acad Sci USA, 1991, 88: 9828-9832
[28] 赵利峰, 柴团耀. AP2/EREBP转录因子在植物发育和胁迫应答中的作用. 植物学通报, 2008, 25: 89-101
Zhao L F, Chai T Y.Roles of AP2/EREBP family of transcription factors in development and stress response of plants,Chin Bull Bot, 2008, 25: 89-101 (in Chinese with English abstract)
[29] Poethig R S.Phase change and the regulation of developmental timing in plants.Science, 2003, 301: 334-336
[30] Feng L, Gao Z, Xiao G, Huang R, Zhang H.Leucine-rich repeat receptor-like kinaseFON1 regulates drought stress and seed germination by activating the expression of ABA-responsive fenes in rice. Plant Mol Biol Rep, 2014, 32: 1158-1168
[31] Jiang L, Qian Q, Mao L, Zhou Q Y, Zhai W X.Characterization of the rice floral organ number mutantfon3. J Integr Plant Biol, 2005, 47: 100-106
[32] Li Y, Xu P, Zhang H, Peng H, Zhang Q, Wang X, Wu X.Characterization and identification of a novel mutantfon(t) on floral organ number and floral organ identity in rice. J Genet Genomics, 2007, 34: 730-737
[33] Kaplinsky N J, Freeling M.Combinatorial control of meristem identity in maize inflorescences.Development, 2003, 130: 1149-1158
[34] Lee D Y, An G.Two AP2 family genes,SUPERNUMERARY BRACT (SNB) and OsINDETERMINATE SPIKELET 1 (OsIDS1), synergistically control inflorescence architecture and floral meristem establishment in rice. Plant J, 2012, 69: 445-461
[35] Padham A K, Hopkins M T, Wang T W, Mcnamara L M, Lo M, Richardson L G, Smith M D, Taylor C A, Thompson J E.Characterization of a plastid triacylglycerol lipase fromArabidopsis. Plant Physiol, 2007, 143: 1372-1384
[36] Zhang B, Wu S, Zhang Y, Xu T, Guo F, Tang H, Li X, Wang P, Qian W, Xue Y.A high temperature-dependent mitochondrial lipaseEXTRA GLUME1 promotes floral phenotypic robustness against temperature fluctuation in rice(Oryza sativa L.). PLoS Genet, 2016, 12: e1006152
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!