欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (10): 1433-1441.doi: 10.3724/SP.J.1006.2018.01433

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米ZmNAOD基因的克隆与功能分析

马晨雨,詹为民,李文亮,张梦迪,席章营()   

  1. 河南农业大学农学院, 河南郑州 450046
  • 收稿日期:2018-03-13 接受日期:2018-06-12 出版日期:2018-10-10 网络出版日期:2018-07-02
  • 通讯作者: 席章营
  • 基金资助:
    本研究由国家自然科学基金项目(31371629)

Cloning and Function Analysis of ZmNAOD Gene in Maize

Chen-Yu MA,Wei-Min ZHAN,Wen-Liang LI,Meng-Di ZHANG,Zhang-Ying XI()   

  1. Agronomy College, Henan Agricultural University, Zhengzhou 450046, Henan, China
  • Received:2018-03-13 Accepted:2018-06-12 Published:2018-10-10 Published online:2018-07-02
  • Contact: Zhang-Ying XI
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31371629)

摘要:

玉米籽粒发育和光周期特性是影响产量的关键因素。本文通过RT-PCR方法, 从玉米骨干自交系昌7-2籽粒的cDNA中克隆得到一个乙酰鸟氨酸脱酰酶基因, 命名为ZmNAODZmNAOD的CDS (coding DNA sequence)长1344 bp, 编码447个氨基酸。qRT-PCR分析表明, ZmNAOD基因在玉米雄穗中的表达量最高, 其次是在籽粒、叶、茎、根中; 该基因在授粉后不同天数籽粒中的表达趋势为, 0~15 d快速上升, 之后迅速下降。对该基因的过表达转基因拟南芥的研究表明, ZmNAOD基因在转基因拟南芥的根中表达量最高; 经暗处理10 d后, 转基因株系根的长度显著长于野生型; 转基因拟南芥的生育期明显提前, 其粒长和千粒重显著大于野生型拟南芥。这些结果表明, ZmNAOD基因的表达可能与籽粒发育和光周期调控有关。

关键词: 玉米, 基因克隆, 转基因, 籽粒发育, 光周期

Abstract:

The development of kernels and the photoperiod characters are key elements that impact yield in maize. A N-acetylornithine deacctylase (NAOD) gene named ZmNAOD was cloned from maize inbred line Chang 7-2 by the method of RT-PCR in our work. The length of CDS (coding DNA sequence) in ZmNAOD gene is 1344 bp, coding a polypeptide of 447 amino acids. The expression of ZmNAOD was abundant in tassel, kernel, leaf, stem and root successively, and was up-regulated in seed from 0 to 15 d, and down-regulated after 15 d. The over-expression recombinant plasmid, pCAMBIA1304-ZmNAOD, was transformed into Arabidopsis using Agrobacterium mediated method, and homogeneous transgenic lines were obtained. The ZmNAOD gene expression was abundant in roots of transgenic Arabidopsis, and the root length was significantly longer than that of the wild type (WT) after a 10-day dark treatment. Flowering days of transgenic lines were earlier, the seeds were longer and the thousand seed weight was heavier than those of the WT. These results demonstrated that the ZmNAOD might be involved in seed development and photoperiod.

Key words: maize, gene cloning, genetic modification, seed development, photoperiod

图1

ZmNAOD的CDS序列及编码的氨基酸序列"

图2

植物中NAOD蛋白的系统进化树"

表1

ZmNAOD启动子区域调控元件预测"

功能
Function
元件名称(核心序列)
Element (core sequence)
胚乳表达元件 cis-acting regulatory element required for endosperm expression Skn-1_motif (GTCAT), GCN4_motif (TGTGTCA)
昼夜节律控制元件 cis-acting regulatory element involved in circadian control Circadian (CAANNNNATC)
光响应相关元件 cis-acting regulatory element involved in light responsiveness G-box (CACGTC), Sp1 (CC(G/A)CCC)
与光响应相关保守 DNA模块
Part of a conserved DNA module involved in light responsiveness
ATCT-motif (AATCTGATCG)
部分光响应相关元件 Part of a light responsive element



LAMP-element (CTTTATCA), Box II (GTGAGGTAATAT), CATT-motif (GCATTC), GAG-motif (AGAGATG), GA-motif (ATAGATAA), I-box (aAGATAAGA),
TGGCA-motif (GATGGAAGTGGCA)
脱落酸响应元件 cis-acting element involved in the abscisic acid responsiveness ABRE (AGTACGTGGC)
生长素响应相关元件
cis-acting regulatory element involved in auxin responsiveness
AuxRR-core (GGTCCAT)
茉莉酸甲酯响应元件
cis-acting regulatory element involved in the MeJA-responsiveness
CGTCA-motif (CGTCA), TGACG-motif (TGACG)
水杨酸响应元件 cis-acting element involved in salicylic acid responsiveness TCA-element (TCAGAAGAGG)
热响应相关元件 cis-acting element involved in heat stress responsiveness HSE (AAAAAATTTC)
低温响应元件 cis-acting element involved in low-temperature responsiveness LTR (CCGAAA)
MYB结合位点 MYB binding site involved in drought-inducibility MBS (TAACTG)
逆境响应元件 cis-acting element involved in defense and stress responsiveness TC-rich repeats (ATTTTCTTCA)

图3

ZmNAOD基因在昌7-2不同器官中的表达"

图4

ZmNAOD基因在授粉后不同天数的籽粒中的表达"

图5

ZmNAOD基因在拟南芥野生型和转基因株系中的表达"

图6

ZmNAOD基因在转基因拟南芥不同器官中的表达"

表2

野生型拟南芥和转基因株系的生育期"

野生型 Wild type T3-17 T3-23 T3-26
第1朵可见花序的天数 Days of the first buds visible (d) 37.60±0.47 36.08±0.42* 34.80±1.08** 36.00±0.53*
第1朵花开花的天数 Days of the first flower visible (d) 48.23±0.55 46.96±0.64* 43.00±0.72** 46.00±0.65**

图7

种植45 d后转基因拟南芥和野生型拟南芥的表型对比 1, 2: 转基因株系T3-23; 3, 4: 野生型植株。"

表3

转基因拟南芥籽粒的表型分析"

野生型
Wild type
转基因T3-17
Transgenic T3-17
转基因T3-23
Transgenic T3-23
转基因T3-26
Transgenic T3-26
粒长 Seed length (mm) 0.7857±0.0380 0.8936±0.0449** 0.9004±0.0527** 0.9029±0.0564**
粒宽 Seed width (mm) 0.6682±0.0259 0.6798±0.0128 0.6656±0.0315 0.6646±0.0220
千粒重 Thousand-seed weight (mg) 13.353±0.122 14.233±0.031** 14.249±0.137** 14.222±0.152**
[1] Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M . Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet, 2008,40:1023-1028
doi: 10.1038/ng.169 pmid: 18604208
[2] Moles A T, Ackerly D D, Webb C O, Tweddle J C, Dickie J B, Westoby M . A brief history of seed size. Science, 2005,307:576-580
doi: 10.1126/science.1104863 pmid: 15681384
[3] Andres F, Coupland G . The genetic basis of flowering responses to seasonal cues. Nat Rev Genet, 2012,13:627-639
doi: 10.1038/nrg3291 pmid: 22898651
[4] Slocum R D . Genes, enzymes and regulation of arginine biosynthesis in plants. Plant Physiol Biochem, 2005,43:729-745
doi: 10.1016/j.plaphy.2005.06.007 pmid: 20202022020202020202020
[5] Shargool D, Jain J C, Mckay G . Ornithine biosynthesis, and arginine biosynthesis and degradation in plant cells. Phytochemistry, 1988,27:1571-1574
doi: 10.1016/0031-9422(88)80404-7
[6] Caldovic L, Tuchman M . N-acetylglutamate and its changing role through evolution. Biochem J, 2003,372:279-290
doi: 10.1042/BJ20030002 pmid: 12633501
[7] Carbonell J, Navarro J L . Correlation of spermine levels with ovary senescence and with fruit set and development in Pisum sativum L. Planta, 1989,178:482-487
[8] Evans P T, Malmberg R L . Do polyamines have roles in plant development? Annu Rev Plant Physiol, 1989,40:235-269
doi: 10.1146/annurev.pp.40.060189.001315
[9] Imai A, Matsuyama T, Hanzawa Y, Akiyama T, Tamaoki M, Saji H, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Komeda Y, Takahashi T . Spermidine synthase genes are essential for survival of Arabidopsis. Plant Physiol, 2004,135:1565-1573
doi: 10.1104/pp.104.041699
[10] Liu J, Nada K, Pang X, Honda C, Kitashiba H, Moriguchi T . Role of polyamines in peach fruit development and storage. Tree Physiol, 2006,26:791-798
doi: 10.1093/treephys/26.6.791 pmid: 16510395
[11] Tiburcio A F, Altabella T, Bitrián M, Alcázar R . The roles of polyamines during the lifespan of plants: from development to stress. Planta, 2014,240:1-18
doi: 10.1007/s00425-014-2055-9 pmid: 24659098
[12] Molesini B, Mennella G, Martini F, Francese G, Pandolfini T . Involvement of the putativeN-acetylornithine deacetylase from Arabidopsis thaliana in flowering and fruit development. Plant Cell Physiol, 2015,56:1084-1096
[13] Molesini B, Zanzoni S, Mennella G, Francese G, Losa A, L Rotino G, Pandolfini T . The Arabidopsis N-acetylornithine deacetylase controls ornithine biosynthesis via a linear pathway with downstream effects on polyamine levels. Plant Cell Physiol, 2017,58:130-144
[14] Fabi J P, Seymour G B, Graham N S, Broadley M R, May S T, Lajolo F M, Cordenunsi B R , Oliveira do Nascimento J R. Analysis of ripening-related gene expression in papaya using an Arabidopsis-based microarray. BMC Plant Biol, 2012,12:242-261
doi: 10.1186/1471-2229-12-242 pmid: 3562526
[15] Molesini B, Rotino G L, Spena A, Pandolfini T . Expression profile analysis of early fruit development in iaaM-parthenocarpic tomato plants. BMC Res Notes, 2009,2:143-149
doi: 10.1186/1756-0500-2-143 pmid: 2718906
[16] Petersen T N , Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods, 2011,8:785-786
doi: 10.1038/nmeth.1701 pmid: 21959131
[17] Kumar S, Stecher G, Tamura K . MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016,33:1870-1874
doi: 10.1093/molbev/msw054 pmid: 27004904
[18] Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S . PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucl Acids Res, 2002,30:325-327
doi: 10.1093/nar/30.1.325
[19] Wang X T, Wu L J, Zhang S F, Wu L C, Ku L X, Wei X M, Xie L L, Chen Y H . Robust expression and association of ZmCCA1 with circadian. Plant Cell Rep, 2011,30:1261-1272
[20] Rajeevan M S, Ranamukhaarachchi D G, Vernon S D, Unger E R . Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods, 2001,25:443-451
doi: 10.1006/meth.2001.1266
[21] Clough S J, Bent A F . Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998,16:735-743
[22] Williams K, Munkvold J, Sorrells M . Comparison of digital image analysis using elliptic Fourier descriptors and major dimensions to phenotype seed shape in hexaploid wheat (Triticum aestivum L.). Euphytica, 2013,190:99-116
[23] Upadyayula N, da Sliva H S, Bohn M O, Rocheford T R . Genetic and QTL analysis of maize tassel and ear inflorescence architecture. Theor Appl Genet, 2006,112:592-606
doi: 10.1007/s00122-005-0133-x pmid: 16395569
[24] Taguchi-Shiobara F, Yuan Z, Hake S, Jackson D . The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes Dev, 2001,15:2755-2766
[25] Bommert P, Nagasawa N S, Jackson D . Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nat Genet, 2013,45:334-337
doi: 10.1038/ng.2534 pmid: 23377180
[26] Chuck G S, Brown P J, Meeley R, Hake S . Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation. Proc Natl Acad Sci USA, 2014,111:18775-18780
[27] Thomas T L . Gene expression during plant embryogenesis and germination: an overview. Plant Cell, 1993,5:1401-1410
doi: 10.2307/3869791 pmid: 8281041
[28] 张冬梅, 刘洋, 赵永锋, 祝丽英, 黄亚群, 郭晋杰, 陈景堂 . 不同杂种优势群玉米籽粒灌浆速率分析. 中国农业科学, 2014,47:3323-3335
Zhang D M, Liu Y, Zhao Y F, Zhu L Y, Huang Y Q, Guo J J, Chen J T . Analysis of maize grain filling rate in different heterotic groups. Sci Agric Sin, 2014,47:3323-3335 (in Chinese with English Abstract)
[29] Pandolfini T, Molesini B, Spena A. Fruit development and seed dispersal. In: Østergaard L, ed. Annual Plant Reviews. UK: Wiley Blackwell Press, 2009, Vol 38, pp 326-345
[30] Qiao D H, Dong Y B, Zhang L, Zhou Q, Hu C H, Ren Y L, Li Y L . Ectopic expression of the maize ZmADF3 gene in Arabidopsis revealing its functions in kernel development. Plant Cell Tissue Organ Cult, 2016,126:239-253
[31] Millar A J, Kay S A . Integration of circadian and phototransduction pathways in the network controlling CAB gene transcription in Arabidopsis. Proc Natl Acad Sci USA, 1996,93:15491-15496
[32] Terzaghi W B, Cashmore A R . Light-regulated transcription. Annu Rev Plant Biol, 1995,46:445-474
doi: 10.1146/annurev.pp.46.060195.002305
[33] Tobin E M, Kehoe D M . Phytochrome-regulated gene expression. Semin Cell Biol, 1994,5:335-346
doi: 10.1006/scel.1994.1040
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[9] 徐昕, 秦超, 赵涛, 刘斌, 李宏宇, 刘军. GmELF3s调控大豆开花时间和生物钟节律的功能分析[J]. 作物学报, 2022, 48(4): 812-824.
[10] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[11] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[12] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[13] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[14] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[15] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!