欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (11): 1661-1672.doi: 10.3724/SP.J.1006.2018.01661

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

阻断授粉诱导玉米叶片提前衰老的转录组分析

吴连成,李沛,田磊,王顺喜,李明娜,王宇宇,王赛,陈彦惠()   

  1. 河南农业大学农学院 / 河南粮食作物协同创新中心 / 小麦玉米作物学国家重点实验室, 河南郑州 450046
  • 收稿日期:2018-01-02 接受日期:2018-07-20 出版日期:2018-11-12 网络出版日期:2018-07-30
  • 通讯作者: 陈彦惠
  • 基金资助:
    本研究由国家重点研发计划项目(2016YFD0101205-3);河南省科技厅基础前沿项目(142300413218)

Transcriptome Analysis of Premature Senescence Induced by Pollination-prevention in Maize

Lian-Cheng WU,Pei LI,Lei TIAN,Shun-Xi WANG,Ming-Na LI,Yu-Yu WANG,Sai WANG,Yan-Hui CHEN()   

  1. College of Agronomy, Henan Agricultural University / Collaborative Innovation Center of Henan Grain Crops / National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, Henan, China
  • Received:2018-01-02 Accepted:2018-07-20 Published:2018-11-12 Published online:2018-07-30
  • Contact: Yan-Hui CHEN
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2016YFD0101205-3);the Basic Frontier Project of Henan Science and Technology Department(142300413218)

摘要:

衰老发生在玉米生长发育的最后阶段, 叶片适时启动衰老对玉米最终产量的形成具有至关重要的作用。本研究以玉米自交系豫816为试材, 采用RNA-seq技术分析阻断授粉诱导玉米叶片提前衰老的分子机制。与正常授粉植株相比, 阻断授粉诱导条件下的植株在吐丝后27 d, 叶片全部变黄并枯萎。吐丝后24 d, 授粉植株与同期非授粉植株叶片间的叶绿素含量差异达到极显著水平。差异表达基因(DEG)分析结果显示, 吐丝后10 d的授粉处理组与同期非授粉处理组比较存在173个DEG; 吐丝后24 d的授粉处理组与同期非授粉处理组比较存在835个DEG。吐丝后24 d的授粉处理组与吐丝后10 d的授粉处理组比较存在1381个DEG; 吐丝后24 d的非授粉处理组与吐丝后10 d的非授粉处理组比较存在1591个DEG。GO功能富集分析发现, 吐丝后10 d, 授粉处理组和非授粉处理组间DEG的功能主要富集在刺激响应和代谢进程; 吐丝后24 d, 授粉处理与非授粉处理间DEG的功能主要富集在光合作用进程。Pathway富集分析结果显示, 吐丝后10 d, 授粉处理与非授粉处理间的DEG主要参与RNA降解、光合作用、木质素合成、转录调控、糖转运代谢路径; 吐丝后24 d, 授粉处理与非授粉处理间的DEG主要参与信号传导、激素代谢和光合作用路径。阻断授粉诱导处理使豫816植株体内碳水化合物代谢和光合作用受到影响, 造成玉米衰老反应的启动和衰老速率显著提前和加快。

关键词: 玉米, 阻断授粉, 早衰, 转录组

Abstract:

Senescence occurs in the last stage of maize growth and development. Timely started leaf aging has a crucial role on the formation of maize final yield. Maize inbred line Yu 816 was used to explore the molecular mechanism of early senescence induced under pollination-prevention by transcriptome analysis. Compared with the normal pollination plants, the leaves of non-pollination plants turned yellow and withered at 27 days after silking (DAS). Leaf chlorophyll content difference between pollination and non-pollination plants reached extremely significant level at 24 DAS. RNA-seq assay revealed there were 173 and 835 differentially expressed genes (DEGs) between pollinated and non-pollinated treatments at 10 DAS and 24 DAS, respectively. There were 1381 DEGs in pollination treatment group and 1591 DEGs in non-pollination treatment group between 10 DAS and 24 DAS. GO analysis showed that DEG functions between pollination and non-pollination treatments were mostly enriched in stimulus response and metabolic process at 10 DAS, whereas mainly in photosynthesis process at 24 DAS. Furthermore, pathway enrichment analysis showed that DEGs between pollinated and non-pollinated treatments were mainly involved in the metabolic pathways such as RNA degradation, photosynthesis, lignin synthesis, transcription regulation and sugar transport at 10 DAS, while primarily in the processes of signaling, hormone metabolism, photosynthesis at 24 DAS. Carbohydrate metabolism and photosynthesis processes affected by pollination-prevention result in the senescence onset and the significantly fast aging ahead of schedule in Yu 816 plants.

Key words: maize, pollination-prevention, premature senescence, transcriptome

表1

RT-qPCR分析中用到的引物"

基因编号
Gene ID
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
GRMZM2G033493 AATGCAACGGAGCCAACAAT TTTGTGACAGCTTCGTTCGG
GRMZM2G035243 CCAGCCATCCGTCTATCCAT TCTAATCTTGCAGCGCGAAC
GRMZM2G109070 GTGTACTACGAGAGGTCCGG AAAGCCCCAAAACGCATCTT
GRMZM2G117198 GGACACATGTTCGGGTATGC ATTGGTCACTGTCTCGTCGT
GRMZM2G339563 ATCGTTCTTCAAGGCCAGGA CATCTCGCGCTTTGAAAGGA
GRMZM5G801627 TGTGCAGGCGACCATGTATA CATCAACTCAAGACGCCGTT
GRMZM2G088053 AGAGTGAGGCCCAAGATGAC CTCAGCCTCTCCATCCTCAG
GRMZM2G109627 CGAGGATAACTGCAACGGTG GTCGTGCAGCTGATGAGAAG
GRMZM2G062129 AGCAAGTCTGATGGCTCACT AGCCAACCCTTGACTAGCAT
GRMZM2G064962 CGAAACACCACGATCCAAGG ATGTAGACTGCCTCCCACAC

图1

授粉和非授粉条件下豫816表型变化图中DAS表示吐丝后天数; POL表示授粉; Non-POL表示非授粉。"

图2

非授粉和授粉植株穗位叶叶绿素含量变化**表示非授粉(Non-POL)和授粉(POL)植株穗位叶叶绿素含量之间差异极显著(P < 0.01)。"

表2

样品reads数分布情况"

样本
Sample
原始数据
Raw data count
过滤后的
reads数量
Count
after filter
过滤后
reads占比
Reads keep rate (%)
比对上的reads数量Mapped reads 比对上的
reads占比
Mapped reads
rate (%)
在参考序列上有
唯一比对位置的
reads数量
Unique mapped reads
有唯一比对位置的reads占比
Unique mapped reads (%)
10DASN_r1 7442024 7291875 97.98 6731287 92.31 5480898 81.42
10DASN_r2 9376032 9181843 97.93 8479906 92.36 7106564 83.80
10DASY_r1 7941949 7777455 97.93 7134198 91.73 5833995 81.78
10DASY_r2 8834814 8644115 97.84 7960889 92.10 6607957 83.01
24DASN_r1 9382351 9163732 97.67 8367413 91.31 7079381 84.61
24DASN_r2 8201533 8054678 98.21 7433771 92.29 6190232 83.27
24DASY_r1 8599542 8432296 98.06 7728019 91.65 6398312 82.79
24DASY_r2 9545411 9339804 97.85 8557539 91.62 7181523 83.92
24DASY_r3 8206919 8027609 97.82 7381500 91.95 6095486 82.58

图3

生物学重复间主成分分析表中N表示非授粉处理; Y表示授粉处理; r表示生物学重复。"

图4

差异表达基因RT-qPCR验证"

图5

差异表达基因的上调下调数目“10N-10Y”代表吐丝后10 d授粉处理组与非授粉处理组, “24N-24Y”代表吐丝后24 d授粉处理组与非授粉处理组, “10Y-24Y”代表授粉处理组吐丝后24 d与授粉植株吐丝后10 d, “10N-24N”代表非授粉处理组吐丝后24 d与非授粉处理吐丝后10 d。"

图6

差异表达基因Venn图维恩图中非重叠区的数字表示在一个成对比较中特有的差异表达基因数目, 重叠区的数字表示在不同成对比较中共有的差异表达基因数目。"

图7

差异表达基因的GO功能分析"

图8

差异表达基因的Pathway富集分析"

表3

吐丝后10 d参与阻断授粉诱导玉米提前衰老相关基因"

玉米基因编号
Maize gene ID
差异倍数
FC (10N/10Y)
基因功能
Gene function
GRMZM2G127846 9.51 Exonuclease family protein
GRMZM2G009223 6.56 Glucose-6-phosphate/phosphate translocator 2 (GPT2)
GRMZM2G339562 6.17 Response to low sulfur 4 (LSU4)
GRMZM2G087254 5.78 APS reductase 3 (APR3)
GRMZM2G071630 3.90 Glyceraldehyde-3-phosphate dehydrogenase C2
GRMZM2G345700 3.83 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein
GRMZM2G139874 3.66 Cinnamate-4-hydroxylase (C4H)
GRMZM2G000264 3.33 H(+)-ATPase 11
GRMZM2G079613 3.23 Tetratricopeptide repeat-like superfamily protein
GRMZM2G144346 0.35 B-box type zinc finger protein with CCT domain
GRMZM2G123896 0.33 Dormancy/auxin associated family protein
GRMZM2G051151 0.31 Oxidative stress 3 (OXS3)
GRMZM2G106792 0.30 NDR1/HIN1-like 2
GRMZM5G801949 0.28 Sugar transporter 4 (STP4)
玉米基因编号
Maize gene ID
差异倍数
FC (10N/10Y)
基因功能
Gene function
GRMZM2G068510 0.24 S-adenosyl-L-methionine-dependent methyltransferases superfamily protein
GRMZM2G172214 0.22 CBS domain containing membrane protein
AC208201.3_FG002 0.20 Protein phosphatase 2C family protein
GRMZM2G412601 0.19 SOS3-interacting protein 3 (SIP3)
GRMZM2G088819 0.16 Calcium-binding EF-hand family protein
GRMZM2G084958 0.15 Protochlorophyllide oxidoreductase A (PORA)
GRMZM2G478553 0.15 RING/U-box superfamily protein (ATL3)
GRMZM2G142802 0.14 Aluminium induced protein
GRMZM2G149024 0.12 Galacturonosyltransferase-like 2
GRMZM2G177050 0.11 SOS3-interacting protein 4 (SIP4)
GRMZM2G131055 0.08 Glycosyltransferase family 61 protein

表4

吐丝后24 d豫816穗位叶中碳水化合物代谢基因"

玉米基因编号
Maize gene ID
差异倍数
FC (24N/24Y)
基因功能
Gene function
GRMZM2G001304 0.19 Trehalose-6-phosphate synthase (TPS)
GRMZM2G068943 0.22 Trehalose-6-phosphate synthase (TPS)
GRMZM2G112830 4.55 Trehalose-phosphatase (TPP)
GRMZM2G099860 4.04 Trehalose-phosphatase (TPP)
GRMZM2G140614 2.75 Glucose-6-phosphate isomerase
GRMZM2G076075 6.43 Glucose-6-phosphate isomerase
GRMZM2G106213 40.55 ADP glucose pyrophosphorylase (AGPase)
GRMZM2G348551 6.92 Starch synthase 2 (SS2)
GRMZM2G089136 0.07 Phosphoglycerate kinase
GRMZM2G104632 2.86 Glyceraldehyde 3-phosphate dehydrogenase (GAP-DH)
GRMZM2G345493 0.09 Fructose-bisphosphate aldolase
GRMZM2G155253 0.05 Fructose-bisphosphate aldolase
玉米基因编号
Maize gene ID
差异倍数
FC (24N/24Y)
基因功能
Gene function
GRMZM2G089365 8.92 Fructose-bisphosphate aldolase
GRMZM2G046284 0.16 Fructose-bisphosphate aldolase
GRMZM5G836250 0.11 Fructose-1,6-bisphosphatase
GRMZM2G306732 0.10 Fructose-1,6-bisphosphatase
GRMZM5G875238 0.16 Sucrose phosphate synthase
GRMZM2G466780 0.20 Fructokinase-like 1 (FLN1)
GRMZM2G103843 0.28 Fructokinase-like 2 (FLN2)
[1] Quirino B F, Noh Y S, Himelblau E, Amasino R M . Molecular aspects of leaf senescence. Trends Plant Sci, 2000,5:278-282
doi: 10.1016/S1360-1385(00)01655-1 pmid: 10871899
[2] Lim P O, Kim H J, Nam H G . Leaf senescence. Annu Rev Plant Biol, 2007,58:115-136
doi: 10.1146/annurev.arplant.57.032905.105316
[3] Wang Y, Li B, Du M, Eneji A E, Wang B M, Duan L S, Li Z H, Tian X L . Mechanism of phytohormone involvement in feedback regulation of cotton leaf senescence induced by potassium deficiency. J Exp Bot, 2012,63:5887-5901
doi: 10.1093/jxb/ers238
[4] Breeze E, Harrison E, Mchattie S, Hughes L, Hickman R, Hill C, Kiddle S, Kim Y S, Penfold C A, Jenkins D, Zhang C, Morris K, Jenner C, Jackson S, Thomas B, Tabrett A, Legaie R, Moore J D, Wild D L, Ott S, Rand D, Beynon J, Denby K, Mead A, Buchanan-Wollaston V . High-resolution temporal profiling of transcripts duringArabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell, 2011,23:873-894
[5] Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D . Themolecular analysis of leaf senescence: a genomics approach. Plant Biotechnol J, 2003,1:3-22
[6] Wu X Y, Hu W J, Luo H, Xia Y, Zhao Y, Wang L D, Zhang L M, Luo J C, Jing H C . Transcriptome profiling of developmental leaf senescence in sorghum (Sorghum bicolor ). Plant Mol Biol, 2016,92:555-580
doi: 10.1007/s11103-016-0532-1 pmid: 27586543
[7] 张子山, 李耕, 高辉远, 刘鹏, 杨程, 孟祥龙, 孟庆伟 . 玉米持绿与早衰品种叶片衰老过程中光化学活性的变化. 作物学报, 2013,39:93-100
doi: 10.3724/SP.J.1006.2013.00093
Zhang Z S, Li G, Gao H Y, Liu P, Yang C, Meng X L, Meng Q W . Changes of photochemistry activity during senescence of leaves in stay greenand quick-leaf-senescence inbred lines of maize. Acta Agron Sin, 2013,39:93-100 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00093
[8] 黄雅敏, 朱杉杉, 赵志超, 蒲志刚, 刘天珍, 罗胜, 张欣 . 水稻早衰突变体psls1的基因定位及克隆. 作物学报, 2017,43:51-62
doi: 10.3724/SP.J.1006.2017.00051
Huang Y M, Zhu S S, Zhao Z C, Pu Z G, Liu T Z, Luo S, Zhang X . Gene mapping and cloning of a premature leaf senescence mutant psls1 in rice. Acta Agron Sin, 2017,43:51-62 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.00051
[9] 肖艳华, 陈新龙, 杜丹, 邢亚迪, 张天泉, 祝毛迪, 刘明明, 朱小燕, 桑贤春, 何光华 . 水稻叶片淀粉积累及早衰突变体esl9的鉴定与基因定位. 作物学报, 2017,43:473-482
Xiao Y H, Chen X L, Du D, Xing Y D, Zhang T Q, Zhu M D, Liu M M, Zhu X Y, Sang X C, He G H . Identification and gene mapping of starch accumulation and early senescence leaf mutant esl9 in rice. Acta Agron Sin, 2017,43:473-482 (in Chinese with English abstract)
[10] Ceppi D, Sala M, Gentinetta E, Verderio A, Motto M . Genotype-dependent leaf senescence in maize: inheritance and effects of pollination-prevention. Plant Physiol, 1987,85:720-725
doi: 10.1104/pp.85.3.720 pmid: 16665767
[11] Zhang W Y, Xu Y C, Li W L, Yang L, Yue X, Zhang X S, Zhao X Y . Transcriptional analyses of natural leaf senescence in maize. PLoS One, 2014,9:e115617
doi: 10.1371/journal.pone.0115617 pmid: 25532107
[12] Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim P O, Nam H G, Lin J F, Wu S H, Swidzinski J, Ishizaki K, Leaver C J . Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence inArabidopsis.Plant J, 2005,42:567-585
[13] van der Graaff E, Schwacke R, Schneider A, Desimone M, Flügge U, Kunze R . Transcription analysis ofArabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol, 2006,141:776-792
[14] Liang C Z, Wang Y Q, Zhu Y N, Tang J Y, Hu B, Liu L C, Ou S J, Wu H K, Sun X H, Chu J F, Chu C C . OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci USA, 2014,111:10013-10018
doi: 10.1073/pnas.1321568111
[15] Penfold C A, Buchanan-Wollaston V . Modelling transcriptional networks in leaf senescence. J Exp Bot, 2014,65:3859-3873
doi: 10.1093/jxb/eru054 pmid: 24600015
[16] Zhou Y, Liu L, Huang W F, Yuan M, Zhou F, Li X H, Lin Y J . Overexpression ofOsSWEET5 in rice causes growth retardation and precocious senescence. PLoS One, 2014,9:e94210
doi: 10.1371/journal.pone.0094210 pmid: 24709840
[17] Liu J, Ji Y B, Zhou J, Xing D . Phosphatidylinositol 3-kinase promotes V-ATPase activation and vacuolar acidification and delays methyl jasmonate-induced leaf senescence. Plant Physiol, 2016,170:1714-1731
[18] Zhao Y, Chan Z L, Gao J H, Xing L, Cao M J, Yu C M, Hu Y L, You J, Shi H T, Zhu Y F, Gong Y H, Mu Z X, Wang H Q, Deng X, Wang P C, Bressan R A, Zhu J K . ABA receptor PYL9 promotes drought resistance and leaf senescence. Proc Natl Acad Sci USA, 2016,113:1949-1954
doi: 10.1073/pnas.1522840113 pmid: 26831097
[19] Mao C J, Lu S C, Lv B, Zhang B, Shen J B, He J M, Luo L Q, Xi D D, Chen X, Ming F . A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis. Plant Physiol, 2017,174:1747-1763
doi: 10.1104/pp.17.00542 pmid: 28500268
[20] Woo H R, Koo H J, Kim J, Jeong H, Yang J O, Lee I H, Jun J H, Choi S H, Park S J, Kang B, Kim Y W, Phee B K, Kim J H, Seo C, Park C, Kim S C, Park S, Lee B, Lee S, Hwang D, Nam H G, Lim P O . Programming of plant leaf senescence with temporal and inter-organellar coordination of transcriptome inArabidopsis.Plant Physiol, 2016,171:452-467
[21] He P, Osaki M, Takebe M, Shinano T, Wasaki J . Endogenous hormones and expression of senescence-related genes in different senescent types of maize. J Exp Bot, 2005,56:1117-1128
doi: 10.1093/jxb/eri103
[22] Mortazavi A, Williams B A, Mccue K, Schaeffer L, Wold B . Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods, 2008,5:621-628
doi: 10.1038/nmeth.1226 pmid: 18516045
[23] Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley D R, Pimentel H, Salzberg S L, Rinn J L, Pachter L . Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protocols, 2012,7:562-578
doi: 10.1038/nprot.2012.016
[24] Usadel B, Nagel A, Thimm O, Redestig H, Blaesing O E, Palacios-Rojas N, Selbig J, Hannemann J, Piques M C, Steinhauser D, Scheible W R, Gibon Y, Morcuende R, Weicht D, Meyer S, Stitt M . Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of coresponding genes, and comparison with known responses. Plant Physiol, 2005,138:1195-1204
doi: 10.1104/pp.105.060459
[25] Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCt Method . Methods, 2001,25:402-408
doi: 10.1006/meth.2001.1262
[26] Long S P, Zhu X G, Naidu S L, Ort D R . Can improvement in photosynthesis increase crop yields. Plant Cell Environ, 2006,29:315-330
doi: 10.1111/pce.2006.29.issue-3
[27] Gregersen P L, Culetic A, Boschian L, Krupinska K . Plant senescence and crop productivity. Plant Mol Biol, 2013,82:603-622
doi: 10.1007/s11103-013-0013-8
[28] Vellai T, Takacs-Vellai K, Sass M, Klionsky D J . The regulation of aging: does autophagy underlie longevity. Trends Cell Biol, 2009,19:487-494
doi: 10.1016/j.tcb.2009.07.007 pmid: 2755611
[29] Yu S M, Lo S F, Ho T D . Source-sink communication: regulated by hormone, nutrient, and stress cross-signaling. Trends Plant Sci, 2015,20:844-857
doi: 10.1016/j.tplants.2015.10.009 pmid: 26603980
[30] Yadav U P, Ivakov A, Feil R, Duan G Y, Walther D, Giavalisco P, Piques M, Carillo P, Hubberten H M, Stitt M, Lunn J E . The sucrose-trehalose 6-phosphate (Tre6P) nexus: specificity and mechanisms of sucrose signalling by Tre6P. J Exp Bot, 2014,65:1051-1068
doi: 10.1093/jxb/ert457
[31] Figueroa C M, Lunn J E . A tale of two sugars: trehalose 6-phosphate and sucrose. Plant Physiol, 2016,172:7
doi: 10.1104/pp.16.00417 pmid: 27482078
[32] Wingler A, Delatte T L, O’hara L E, Primavesi L F, Jhurreea D, Paul M J, Schluepmann H . Trehalose 6-phosphate is required for the onset of leaf senescence associated with high carbon availability. Plant Physiol, 2012,158:1241-1251
doi: 10.1104/pp.111.191908
[33] Song Y W, Xiang F Y, Zhang G Z, Miao Y C, Miao C, Song C P . Abscisic acid as an internal integrator of multiple physiological processes modulates leaf senescence onset inArabidopsis thaliana.Front Plant Sci, 2016, doi: 10.3389/fpls.2016.00181
[34] Koyama T, Nii H, Mitsuda N, Ohta M, Kitajima S, Ohme-Takagi M, Sato F . A regulatory cascade involving class II ETHYLENE RESPONSE FACTOR transcriptional repressors operates in the progression of leaf senescence. Plant Physiol, 2013,162:991-1005
doi: 10.1104/pp.113.218115
[35] Koyama T . The roles of ethylene and transcription factors in the regulation of onset of leaf senescence. Front Plant Sci, 2014,5:650
doi: 10.3389/fpls.2014.00650 pmid: 4243489
[36] Dong H Z, Niu Y H, Li W J, Zhang D M . Effects of cotton rootstock on endogenous cytokinins and abscisic acid in xylem sap and leaves in relation to leaf senescence. J Exp Bot, 2008,59:1295-1304
doi: 10.1093/jxb/ern035
[37] Jiang Y J, Liang G, Yang S Z, Yu D Q . Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence. Plant Cell, 2014,26:230-245
[38] Lee H N, Lee K H, Kim C S . Abscisic acid receptor PYRABACTIN RESISTANCE-LIKE 8, PYL8, is involved in glucose response and dark-induced leaf senescence in Arabidopsis. Biochem Biophy Res Commun, 2015,463:24-28
[39] Kim H J, Nam H G, Lim P O . Regulatory network of NAC transcription factors in leaf senescence. Curr Opin Plant Biol, 2016,33:48-56
doi: 10.1016/j.pbi.2016.06.002 pmid: 27314623
[40] Guo P R, Li Z H, Huang P X, Li B S, Shuang F, Chu J F, Guo H W . A tripartite amplification loop involving the transcription factor WRKY75, salicylic acid, and reactive oxygen species accelerates leaf senescence. Plant Cell, 2017. doi: https://doi.org/ 10.1105/tpc.17.00438
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[4] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[9] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[10] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[11] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[12] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[13] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[14] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[15] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!