作物学报 ›› 2018, Vol. 44 ›› Issue (11): 1661-1672.doi: 10.3724/SP.J.1006.2018.01661
吴连成,李沛,田磊,王顺喜,李明娜,王宇宇,王赛,陈彦惠()
Lian-Cheng WU,Pei LI,Lei TIAN,Shun-Xi WANG,Ming-Na LI,Yu-Yu WANG,Sai WANG,Yan-Hui CHEN()
摘要:
衰老发生在玉米生长发育的最后阶段, 叶片适时启动衰老对玉米最终产量的形成具有至关重要的作用。本研究以玉米自交系豫816为试材, 采用RNA-seq技术分析阻断授粉诱导玉米叶片提前衰老的分子机制。与正常授粉植株相比, 阻断授粉诱导条件下的植株在吐丝后27 d, 叶片全部变黄并枯萎。吐丝后24 d, 授粉植株与同期非授粉植株叶片间的叶绿素含量差异达到极显著水平。差异表达基因(DEG)分析结果显示, 吐丝后10 d的授粉处理组与同期非授粉处理组比较存在173个DEG; 吐丝后24 d的授粉处理组与同期非授粉处理组比较存在835个DEG。吐丝后24 d的授粉处理组与吐丝后10 d的授粉处理组比较存在1381个DEG; 吐丝后24 d的非授粉处理组与吐丝后10 d的非授粉处理组比较存在1591个DEG。GO功能富集分析发现, 吐丝后10 d, 授粉处理组和非授粉处理组间DEG的功能主要富集在刺激响应和代谢进程; 吐丝后24 d, 授粉处理与非授粉处理间DEG的功能主要富集在光合作用进程。Pathway富集分析结果显示, 吐丝后10 d, 授粉处理与非授粉处理间的DEG主要参与RNA降解、光合作用、木质素合成、转录调控、糖转运代谢路径; 吐丝后24 d, 授粉处理与非授粉处理间的DEG主要参与信号传导、激素代谢和光合作用路径。阻断授粉诱导处理使豫816植株体内碳水化合物代谢和光合作用受到影响, 造成玉米衰老反应的启动和衰老速率显著提前和加快。
[1] |
Quirino B F, Noh Y S, Himelblau E, Amasino R M . Molecular aspects of leaf senescence. Trends Plant Sci, 2000,5:278-282
doi: 10.1016/S1360-1385(00)01655-1 pmid: 10871899 |
[2] |
Lim P O, Kim H J, Nam H G . Leaf senescence. Annu Rev Plant Biol, 2007,58:115-136
doi: 10.1146/annurev.arplant.57.032905.105316 |
[3] |
Wang Y, Li B, Du M, Eneji A E, Wang B M, Duan L S, Li Z H, Tian X L . Mechanism of phytohormone involvement in feedback regulation of cotton leaf senescence induced by potassium deficiency. J Exp Bot, 2012,63:5887-5901
doi: 10.1093/jxb/ers238 |
[4] | Breeze E, Harrison E, Mchattie S, Hughes L, Hickman R, Hill C, Kiddle S, Kim Y S, Penfold C A, Jenkins D, Zhang C, Morris K, Jenner C, Jackson S, Thomas B, Tabrett A, Legaie R, Moore J D, Wild D L, Ott S, Rand D, Beynon J, Denby K, Mead A, Buchanan-Wollaston V . High-resolution temporal profiling of transcripts duringArabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell, 2011,23:873-894 |
[5] | Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D . Themolecular analysis of leaf senescence: a genomics approach. Plant Biotechnol J, 2003,1:3-22 |
[6] |
Wu X Y, Hu W J, Luo H, Xia Y, Zhao Y, Wang L D, Zhang L M, Luo J C, Jing H C . Transcriptome profiling of developmental leaf senescence in sorghum (Sorghum bicolor ). Plant Mol Biol, 2016,92:555-580
doi: 10.1007/s11103-016-0532-1 pmid: 27586543 |
[7] |
张子山, 李耕, 高辉远, 刘鹏, 杨程, 孟祥龙, 孟庆伟 . 玉米持绿与早衰品种叶片衰老过程中光化学活性的变化. 作物学报, 2013,39:93-100
doi: 10.3724/SP.J.1006.2013.00093 |
Zhang Z S, Li G, Gao H Y, Liu P, Yang C, Meng X L, Meng Q W . Changes of photochemistry activity during senescence of leaves in stay greenand quick-leaf-senescence inbred lines of maize. Acta Agron Sin, 2013,39:93-100 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00093 |
|
[8] |
黄雅敏, 朱杉杉, 赵志超, 蒲志刚, 刘天珍, 罗胜, 张欣 . 水稻早衰突变体psls1的基因定位及克隆. 作物学报, 2017,43:51-62
doi: 10.3724/SP.J.1006.2017.00051 |
Huang Y M, Zhu S S, Zhao Z C, Pu Z G, Liu T Z, Luo S, Zhang X . Gene mapping and cloning of a premature leaf senescence mutant psls1 in rice. Acta Agron Sin, 2017,43:51-62 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.00051 |
|
[9] | 肖艳华, 陈新龙, 杜丹, 邢亚迪, 张天泉, 祝毛迪, 刘明明, 朱小燕, 桑贤春, 何光华 . 水稻叶片淀粉积累及早衰突变体esl9的鉴定与基因定位. 作物学报, 2017,43:473-482 |
Xiao Y H, Chen X L, Du D, Xing Y D, Zhang T Q, Zhu M D, Liu M M, Zhu X Y, Sang X C, He G H . Identification and gene mapping of starch accumulation and early senescence leaf mutant esl9 in rice. Acta Agron Sin, 2017,43:473-482 (in Chinese with English abstract) | |
[10] |
Ceppi D, Sala M, Gentinetta E, Verderio A, Motto M . Genotype-dependent leaf senescence in maize: inheritance and effects of pollination-prevention. Plant Physiol, 1987,85:720-725
doi: 10.1104/pp.85.3.720 pmid: 16665767 |
[11] |
Zhang W Y, Xu Y C, Li W L, Yang L, Yue X, Zhang X S, Zhao X Y . Transcriptional analyses of natural leaf senescence in maize. PLoS One, 2014,9:e115617
doi: 10.1371/journal.pone.0115617 pmid: 25532107 |
[12] | Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim P O, Nam H G, Lin J F, Wu S H, Swidzinski J, Ishizaki K, Leaver C J . Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence inArabidopsis.Plant J, 2005,42:567-585 |
[13] | van der Graaff E, Schwacke R, Schneider A, Desimone M, Flügge U, Kunze R . Transcription analysis ofArabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol, 2006,141:776-792 |
[14] |
Liang C Z, Wang Y Q, Zhu Y N, Tang J Y, Hu B, Liu L C, Ou S J, Wu H K, Sun X H, Chu J F, Chu C C . OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci USA, 2014,111:10013-10018
doi: 10.1073/pnas.1321568111 |
[15] |
Penfold C A, Buchanan-Wollaston V . Modelling transcriptional networks in leaf senescence. J Exp Bot, 2014,65:3859-3873
doi: 10.1093/jxb/eru054 pmid: 24600015 |
[16] |
Zhou Y, Liu L, Huang W F, Yuan M, Zhou F, Li X H, Lin Y J . Overexpression ofOsSWEET5 in rice causes growth retardation and precocious senescence. PLoS One, 2014,9:e94210
doi: 10.1371/journal.pone.0094210 pmid: 24709840 |
[17] | Liu J, Ji Y B, Zhou J, Xing D . Phosphatidylinositol 3-kinase promotes V-ATPase activation and vacuolar acidification and delays methyl jasmonate-induced leaf senescence. Plant Physiol, 2016,170:1714-1731 |
[18] |
Zhao Y, Chan Z L, Gao J H, Xing L, Cao M J, Yu C M, Hu Y L, You J, Shi H T, Zhu Y F, Gong Y H, Mu Z X, Wang H Q, Deng X, Wang P C, Bressan R A, Zhu J K . ABA receptor PYL9 promotes drought resistance and leaf senescence. Proc Natl Acad Sci USA, 2016,113:1949-1954
doi: 10.1073/pnas.1522840113 pmid: 26831097 |
[19] |
Mao C J, Lu S C, Lv B, Zhang B, Shen J B, He J M, Luo L Q, Xi D D, Chen X, Ming F . A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis. Plant Physiol, 2017,174:1747-1763
doi: 10.1104/pp.17.00542 pmid: 28500268 |
[20] | Woo H R, Koo H J, Kim J, Jeong H, Yang J O, Lee I H, Jun J H, Choi S H, Park S J, Kang B, Kim Y W, Phee B K, Kim J H, Seo C, Park C, Kim S C, Park S, Lee B, Lee S, Hwang D, Nam H G, Lim P O . Programming of plant leaf senescence with temporal and inter-organellar coordination of transcriptome inArabidopsis.Plant Physiol, 2016,171:452-467 |
[21] |
He P, Osaki M, Takebe M, Shinano T, Wasaki J . Endogenous hormones and expression of senescence-related genes in different senescent types of maize. J Exp Bot, 2005,56:1117-1128
doi: 10.1093/jxb/eri103 |
[22] |
Mortazavi A, Williams B A, Mccue K, Schaeffer L, Wold B . Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods, 2008,5:621-628
doi: 10.1038/nmeth.1226 pmid: 18516045 |
[23] |
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley D R, Pimentel H, Salzberg S L, Rinn J L, Pachter L . Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protocols, 2012,7:562-578
doi: 10.1038/nprot.2012.016 |
[24] |
Usadel B, Nagel A, Thimm O, Redestig H, Blaesing O E, Palacios-Rojas N, Selbig J, Hannemann J, Piques M C, Steinhauser D, Scheible W R, Gibon Y, Morcuende R, Weicht D, Meyer S, Stitt M . Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of coresponding genes, and comparison with known responses. Plant Physiol, 2005,138:1195-1204
doi: 10.1104/pp.105.060459 |
[25] |
Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCt Method . Methods, 2001,25:402-408
doi: 10.1006/meth.2001.1262 |
[26] |
Long S P, Zhu X G, Naidu S L, Ort D R . Can improvement in photosynthesis increase crop yields. Plant Cell Environ, 2006,29:315-330
doi: 10.1111/pce.2006.29.issue-3 |
[27] |
Gregersen P L, Culetic A, Boschian L, Krupinska K . Plant senescence and crop productivity. Plant Mol Biol, 2013,82:603-622
doi: 10.1007/s11103-013-0013-8 |
[28] |
Vellai T, Takacs-Vellai K, Sass M, Klionsky D J . The regulation of aging: does autophagy underlie longevity. Trends Cell Biol, 2009,19:487-494
doi: 10.1016/j.tcb.2009.07.007 pmid: 2755611 |
[29] |
Yu S M, Lo S F, Ho T D . Source-sink communication: regulated by hormone, nutrient, and stress cross-signaling. Trends Plant Sci, 2015,20:844-857
doi: 10.1016/j.tplants.2015.10.009 pmid: 26603980 |
[30] |
Yadav U P, Ivakov A, Feil R, Duan G Y, Walther D, Giavalisco P, Piques M, Carillo P, Hubberten H M, Stitt M, Lunn J E . The sucrose-trehalose 6-phosphate (Tre6P) nexus: specificity and mechanisms of sucrose signalling by Tre6P. J Exp Bot, 2014,65:1051-1068
doi: 10.1093/jxb/ert457 |
[31] |
Figueroa C M, Lunn J E . A tale of two sugars: trehalose 6-phosphate and sucrose. Plant Physiol, 2016,172:7
doi: 10.1104/pp.16.00417 pmid: 27482078 |
[32] |
Wingler A, Delatte T L, O’hara L E, Primavesi L F, Jhurreea D, Paul M J, Schluepmann H . Trehalose 6-phosphate is required for the onset of leaf senescence associated with high carbon availability. Plant Physiol, 2012,158:1241-1251
doi: 10.1104/pp.111.191908 |
[33] | Song Y W, Xiang F Y, Zhang G Z, Miao Y C, Miao C, Song C P . Abscisic acid as an internal integrator of multiple physiological processes modulates leaf senescence onset inArabidopsis thaliana.Front Plant Sci, 2016, doi: 10.3389/fpls.2016.00181 |
[34] |
Koyama T, Nii H, Mitsuda N, Ohta M, Kitajima S, Ohme-Takagi M, Sato F . A regulatory cascade involving class II ETHYLENE RESPONSE FACTOR transcriptional repressors operates in the progression of leaf senescence. Plant Physiol, 2013,162:991-1005
doi: 10.1104/pp.113.218115 |
[35] |
Koyama T . The roles of ethylene and transcription factors in the regulation of onset of leaf senescence. Front Plant Sci, 2014,5:650
doi: 10.3389/fpls.2014.00650 pmid: 4243489 |
[36] |
Dong H Z, Niu Y H, Li W J, Zhang D M . Effects of cotton rootstock on endogenous cytokinins and abscisic acid in xylem sap and leaves in relation to leaf senescence. J Exp Bot, 2008,59:1295-1304
doi: 10.1093/jxb/ern035 |
[37] | Jiang Y J, Liang G, Yang S Z, Yu D Q . Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence. Plant Cell, 2014,26:230-245 |
[38] | Lee H N, Lee K H, Kim C S . Abscisic acid receptor PYRABACTIN RESISTANCE-LIKE 8, PYL8, is involved in glucose response and dark-induced leaf senescence in Arabidopsis. Biochem Biophy Res Commun, 2015,463:24-28 |
[39] |
Kim H J, Nam H G, Lim P O . Regulatory network of NAC transcription factors in leaf senescence. Curr Opin Plant Biol, 2016,33:48-56
doi: 10.1016/j.pbi.2016.06.002 pmid: 27314623 |
[40] | Guo P R, Li Z H, Huang P X, Li B S, Shuang F, Chu J F, Guo H W . A tripartite amplification loop involving the transcription factor WRKY75, salicylic acid, and reactive oxygen species accelerates leaf senescence. Plant Cell, 2017. doi: https://doi.org/ 10.1105/tpc.17.00438 |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[4] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[5] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[6] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[7] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[8] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[9] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[10] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[11] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[12] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[13] | 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. |
[14] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[15] | 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192. |
|