欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (11): 1650-1660.doi: 10.3724/SP.J.1006.2018.01650

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝锌指蛋白转录因子BoC2H2的克隆、定位与表达分析

罗绍兰1,廉小平2,蒲敏1,白晓璟1,王玉奎1,曾静4,施松梅3,张贺翠1,朱利泉1,*()   

  1. 1 西南大学农学与生物科技学院, 重庆 400700
    2 西南大学园艺园林学院, 重庆 400700
    3 西南大学资源与环境科学学院, 重庆 400700
    4 长江师范学院生命科学与技术学院, 重庆 408100
  • 收稿日期:2018-02-12 接受日期:2018-07-20 出版日期:2018-11-12 网络出版日期:2018-07-30
  • 通讯作者: 朱利泉
  • 基金资助:
    本研究由国家自然科学基金项目(31572127);西南大学基本科研业务费专项资金项目(XDJK2017E073)

Molecular Cloning, Location and Expression Analysis of Brasscia oleracea Zinc Finger Protein Transcription Factor BoC2H2

Shao-Lan LUO1,Xiao-Ping LIAN2,Min PU1,Xiao-Jing BAI1,Yu-Kui WANG1,Jing ZENG4,Song-Mei SHI3,He-Cui ZHANG1,Li-Quan ZHU1,*()   

  1. 1 College of Agronomy and Biotechnology, Southwest University, Chongqing 400700, China
    2 College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400700, China
    3 College of Resources and Environmental Sciences, Southwest University, Chongqing 400700, China
    4 College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 400718, China
  • Received:2018-02-12 Accepted:2018-07-20 Published:2018-11-12 Published online:2018-07-30
  • Contact: Li-Quan ZHU
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31572127);the Fundamental Research Fund of Southwest University(XDJK2017E073)

摘要:

C2H2型锌指蛋白是植物中最重要的转录调节子之一, 主要调控植物的生长发育和胁迫应答反应。本研究通过分析自交不亲和甘蓝未授粉, 自花授粉15、30和60 min, 异花授粉15、30和60 min柱头转录组数据, 筛选到一个自花授粉诱导上调表达的C2H2型锌指蛋白基因, 命名为BoC2H2BoC2H2开放阅读框756 bp, 编码251个氨基酸残基, 蛋白分子量为26.7 kDa, 等电点为4.62, 是一种亲水性蛋白, 不含信号肽和跨膜域, 含有C2H2型锌指蛋白家族高度保守的ZnF_C2H2结构域。BoC2H2起始密码子上游2000 bp的核苷酸序列中含有光响应、昼夜节律、茉莉酸响应、防御和应激反应等多种顺式作用元件。通过原生质体亚细胞定位和瞬时浸染烟草, 发现BoC2H2蛋白在细胞核和细胞质中表达。BoC2H2在下胚轴、叶片和花中均有表达, 柱头中的表达量随发育时间而变化, 开花当天后表达量降低。荧光定量PCR结果显示, BoC2H2在自花授粉和异花授粉0~60 min的表达量变化趋势与转录组分析结果基本一致。综上所述, 甘蓝BoC2H2属于C2H2型锌指蛋白家族, 可能参与了柱头响应花粉刺激的分子过程, 这有利于揭示BoC2H2在甘蓝自交不亲和过程中的作用机制, 为研究C2H2型转录因子在甘蓝自交不亲和过程中的调控机制提供依据。

关键词: 甘蓝, C2H2锌指蛋白, BoC2H2基因, 自交不亲和, 定位, 表达分析

Abstract:

C2H2-type zinc finger protein family is one of the most important transcriptional regulator in plants, which it mainly involved in regulation plant growth and stress response. In this study, we screened and compared non-pollinated, self- or cross-pollinated 15, 30, and 60 min pistil transcriptome data, and isolated a gene with specifically up-regulated expression induced by self-pollination, named as BoC2H2. Molecular cloning indicated that BoC2H2 is a single exon gene, encoding a 251 amino acids protein. The protein molecular weight is 26.7 kDa and theoretical isoelectric point is 4.62. BoC2H2 contains a highly conserved ZnF_C2H2 domain. Physicochemical property analysis found BoC2H2 is a hydrophilic protein, not contains signal peptide and transmembrane domain. The 2000 bp upstream of BoC2H2 translation start codon contains light response, circadian rhythm, jasmonic acid response, defense and stress response cis acting elements and so on. The sub-cellular location of BoC2H2 in nuclear and cytoplasm were verified by transforming to Arabidopsis protoplast and tobacco. RT-PCR analysis indicated that BoC2H2 expressed in hypocotyls, leaves and flowers. The expression level of BoC2H2 in pistil changed with development stages and specifically decreased after flowering day. qRT-PCR analysis revealed that BoC2H2 mRNA expression level after self- and cross-pollination 0 min to 60 min were similar with RNA-seq data. In conclusion, BoC2H2 belongs to C2H2 type of zinc finger protein family and may involve in pistil-pollen stimulating molecular processes. Our founding is helpful to reveal the mechanism of BoC2H2 in Brassica oleracea self-incompatibility response and provide a clue for studying the function of C2H2 type of transcription factors in B. oleracea self-incompatibility response.

Key words: Brassica oleracea, C2H2-type zinc finger protein, BoC2H2, self-incompatibility, location, expression analysis

表1

基因克隆及其荧光定量 PCR 分析所用引物"

引物名称
Primer
引物序列
Primer sequence (5°-3°)
引物说明
Primer annotation
1300-GFP-F GAGAACACGGGGGACTCTAGAATGAGTGATCCCGAGAAAACAAAAG 基因的亚细胞定位
1300-GFP-R GCCCTTGCTCACCATGAGCTCCTCGGCTTTGTCCTCTTTTGC Subcellular localization
35S-R CCGATCTAGTAACATAGATGACACCG 通用引物 Universal primer
Gus-F CAAGCTTGGCTGCAGGTCGACTTCGACTCAGCGTGTTATG 基因的启动子活性分析
Gus-R GGTGGACTCCTCTTAGAATTCGATTTTGACTTTGTTGAGAG Promoter activity analysis
1391-F GAACTGATCGTTAAAACTGC 通用引物
1391-R TGGTCTTCTGAGACTGTATC Universal primer
RT-PCR-F GTGAACACTGAGGAAAGAATTAATG 荧光定量PCR引物
RT-PCR-R CAACCTCTTGTTCCATGTTGTC Primers for real-time PCR
Actin3-F GAGTAGAAAATGGCTGATGGTGAAG 扩增内参基因
Actin3-R TCATCTTCTCACGGTTAGCCTTTG For the internal control

图1

柱头内BoC2H2响应自花和异花授粉后表达模式0: 未授粉柱头。0: unpollinated stigma."

图2

甘蓝BoC2H2基因gDNA和cDNA PCR序列扩增 M: DL2000; gDNA: BoC2H2基因gDNA全长扩增条带; cDNA: BoC2H2基因cDNA全长扩增条带。"

图3

BoC2H2核苷酸序列及对应的氨基酸序列实线框表示ZnF_C2H2结构域。The box was ZnF_C2H2 domain."

图4

BoC2H2与其他物种C2H2氨基酸序列的系统进化树"

"

相关功能预测Associated putative function 启动子顺式作用元件 cis-elements in the promoter region
Light responsive element CATT-motif, GAG-motif, Gap-box
Circadian control Circadian
Auxin-responsive element TGA-element
Gibberellin-responsive GARE-motif
Zein metabolism regulation O2-site
Meristem expression CAT-box
Endosperm expression GCN4_motif, Skn-1_motif
Defense and stress responsiveness TC-rich repeats
Elicitor-responsive element EIRE, ELI-box3
Essential for the anaerobic induction ARE
Promoter and enhancer regions CAAT-box
MeJA-responsiveness CGTCA-motif, TGACG-motif
Anoxic specific inducibility GC-motif
Low-temperature responsiveness LTR
MYB binding site involved in drought-inducibility MYB MBS
Core promoter element around -30 of transcription start TATA-box
Salicylic acid responsiveness TCA-element

图5

BoC2H2-1300-GFP融合蛋白在烟草表皮细胞中的亚细胞定位 A: 1300-GFP载体的亚细胞定位(对照); B: BoC2H2-1300-GFP的亚细胞定位; 箭头所指为细胞核位置。"

图6

BoC2H2-1300-GFP融合蛋白在拟南芥原生质体中的亚细胞定位 A: 1300-GFP载体的亚细胞定位(对照); B: BoC2H2-1300-GFP的亚细胞定位; 箭头所指为细胞核位置。"

图7

甘蓝BoC2H2基因在不同组织中的表达分析"

图8

转基因植株PCR检测1, 2条带为BoC2H2-GUS转基因植株, 3条带为pCAMBIA 1391转基因植株, WT为野生型拟南芥。"

图9

GUS染色分析a~b: 幼苗不同发育时期; c~f: 叶子不同发育时期; g~k: 花的不同发育时期; l~m: 果荚不同发育时期。"

图10

甘蓝柱头内BoC2H2响应自花和异花授粉后表达模式"

[1] Ciftci-Yilmaz S, Mittler R . The zinc finger network of plants. Cell Mol Life Sci, 2008,65:1150-1160
doi: 10.1007/s00018-007-7473-4
[2] Miller G, Shulaev V, Mittler R . Reactive oxygen signaling and abiotic stress. Physiol Plant, 2008,133:481-489
doi: 10.1111/j.1399-3054.2008.01090.x pmid: 18346071
[3] Jiang L, Pan L J . Identification and expression of C2H2 transcription factor genes inCarica papaya under abiotic and biotic stresses. Mol Biol Rep, 2012,39:7105-7115
[4] Zhang H, Ni L, Liu Y P, Wang Y F, Zhang A, Tan M P, Jiang M Y . The C2H2-type zinc finger protein ZFP182 is involved in abscisic acid-induced antioxidant defense in rice. J Integr Plant Biol, 2012,54:500-510
doi: 10.1111/jipb.2012.54.issue-7
[5] Miller J , McLachlan A D, Klug A. Repetitive zinc-binding domains in the protein transcription factor IIIA fromXenopus oocytes.EMBO J, 1985,4:1609-1614
[6] 黄骥, 王建飞, 张红生 . 植物 C2H2 型锌指蛋白的结构与功能. 遗传, 2004,26:414-418
doi: 10.3321/j.issn:0253-9772.2004.03.029
Huang J, Wang J F, Zhang H S . Structure and function of plant C2H2 zinc finger protein. Hereditas, 2004,26:414-418 (in Chinese with English abstract)
doi: 10.3321/j.issn:0253-9772.2004.03.029
[7] Berg J M, Shi Y G . The galvanization of biology: a growing appreciation for the roles of zinc. Science, 1996,271:1081-1085
doi: 10.1126/science.271.5252.1081 pmid: 8599083
[8] Moore M, Ullman C . Recent developments in the engineering of zinc finger proteins. Brief Funct Genomic Proteomic, 2003,1:342-355
doi: 10.1093/bfgp/1.4.342 pmid: 15239882
[9] Schumann U, Prestele J , O’Geen H, Brueggeman R, Wanner G, Gietl C. Requirement of the C3HC4 zinc RING finger of theArabidopsis PEX10 for photorespiration and leaf peroxisome contact with chloroplasts. Proc Natl Acad Sci USA, 2007,104:1069-1074
[10] Nguyen X C, Kim S H, Lee K, Kim K E, Liu X M, Han H J, Hoang H T, Lee S W, Hong J C, Moon Y H, Chung W S . Identification of a C2H2-type zinc finger transcription factor (ZAT10) fromArabidopsis as a substrate of MAP kinase. Plant Cell Rep, 2012,31:737-745
[11] Bogamuwa S, Jang J C . The Arabidopsis tandem CCCH zinc finger proteins AtTZF4, 5 and 6 are involved in light-, abscisic acid- and gibberellic acid-mediated regulation of seed germination.Plant Cell Environ, 2013,36:1507-1519
[12] Zhou Z J, Sun L L, Zhao Y Q, An L J, Yan A, Meng X F, Gan Y B . Zinc Finger Protein 6 (ZFP6) regulates trichome initiation by integrating gibberellin and cytokinin signaling inArabidopsis thaliana.New Phytol, 2013,198:699-708
[13] Iuchi S . Three classes of C2H2 zinc finger proteins. Cell Mol Life Sci, 2001,58:625-635
doi: 10.1007/PL00000885 pmid: 11361095
[14] Agarwal P, Arora R, Ray S, Singh A K, Singh V P, Takatsuji H, Kapoor S, Tyagi A K . Genome-wide identification of C2H2 zinc-finger gene family in rice and their phylogeny and expression analysis. Plant Mol Biol, 2007,65:467-485
doi: 10.1007/s11103-007-9199-y
[15] Wu C Y, You C J, Li C, Li C S, Long T, Chen G X, Byrne M E, Zhang Q F . RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice. Proc Natl Acad Sci USA, 2008,105:12915-12920
doi: 10.1073/pnas.0806019105
[16] Liu W X, Zhang F C, Zhang W Z, Song L F, Wu W H, Chen Y F . Arabidopsis Di19 functions as a transcription factor and modulates PR1, PR2, and PR5 expression in response to drought stress. Mol Plant, 2013,6:1487-1502
[17] Gao H S, Song A P, Zhu X R, Chen F D, Jiang J F, Chen Y, Sun Y, Shan H, Gu C S, Li P L, Chen S M . The heterologous expression in Arabidopsis of a chrysanthemum Cys2/His2 zinc finger protein gene confers salinity and drought tolerance. Planta, 2012,235:979-993
[18] Yang B, Jiang Y Q, Rahman M H, Deyholos M K, Kav N N . Identification and expression analysis of WRKY transcription factor genes in canola (Brassica napus L.) in response to fungal pathogens and hormone treatments. BMC Plant Biol, 2009,9:68
[19] He Y J, Mao S S, Gao Y L, Zhu L Y, Wu D M, Cui Y X, Li J N, Qian W . Genome-wide identification and expression analysis of WRKY transcription factors under multiple stresses inBrassica napus.PLoS One, 2016,11:e0157558
[20] 程影 . 芸薹属蔬菜耐盐基因 STZ 的克隆及生理性状分析. 南京农业大学硕士学位论文, 江苏南京, 2011
doi: 10.7666/d.Y2360507
Cheng Y . Cloning and Physiological Characterization of Salt Tolerance Gene STZ in Brassica. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2011 ( in Chinese with English abstract)
doi: 10.7666/d.Y2360507
[21] Devaiah B N, Nagarajan V K, Raghothama K G . Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6. Plant Physiol, 2007,145:147-159
[22] Mito T, Seki M, Shinozaki K, Takagi M O, Matsui K . Generation of chimeric repressors that confer salt tolerance in Arabidopsis and rice.Plant Biotechnol J, 2011,9:736-746
doi: 10.1111/j.1467-7652.2010.00578.x pmid: 21114612
[23] Zhang H, Liu Y P, Wen F, Yao D M, Wang L, Guo J, Ni L, Zhang A, Tan M P, Jiang M Y . A novel rice C2H2-type zinc finger protein, ZFP36, is a key player involved in abscisic acid-induced antioxidant defence and oxidative stress tolerance in rice. J Exp Bot, 2014,65:5795-5809
doi: 10.1093/jxb/eru313
[24] 路小春 . 甘蓝型油菜编码WIPr锌指蛋白的TT1基因家族的克隆及在黄、黑籽之间的差异表达. 云南农业大学硕士学位论文, 云南昆明, 2006
Lu X C . Cloning and Differential Expression of TT1 Gene Family Encoding WIPr Zinc Finger Protein in Brassica napus L. MS Thesis of Yunnan Agricultural University, Kunming, Yunnan, China, 2006 ( in Chinese with English abstract)
[25] Qureshi M K, Sujeeth N, Gechev T S, Hille J . The zinc finger protein ZAT11 modulates paraquat-induced programmed cell death inArabidopsis thaliana.Acta Physiol Plant, 2013,35:1863-1871
[26] Khatun K, Nath U K , Robin A H K, Park J I, Lee D J, Kim M B, Kim C K, Lim K B, Nou I S, Chung M Y. Genome-wide analysis and expression profiling of zinc finger homeodomain (ZHD) family genes reveal likely roles in organ development and stress responses in tomato. BMC Genomics, 2017,18:695
doi: 10.1186/s12864-017-4082-y
[27] Wang W L, Wu P, Li Y, Hou X L . Genome-wide analysis and expression patterns of ZF-HD transcription factors under different developmental tissues and abiotic stresses in Chinesecabbage.Mol Genet Genomics, 2016,291:1451-1464
[28] 柳琼, 黄毅, 陶章生, 黄顺谋, 王新发, 黄邦全, 刘贵华 . 甘蓝型油菜TF III A型锌指蛋白基因鉴别和表达模式. 中国油料作物学报, 2014,36:562-571
Liu Q, Huang Y, Tao Z S, Huang S M, Wang X F, Huang B Q, Liu G H . Identification and expression pattern of TF III A zinc finger protein gene in Brassica napus L. Chin J Oil Crop Sci, 2014,36:562-571 (in Chinese with English abstract)
[29] Bowman J L, Sakai H, Jack T, Weigel D, Mayer U, Meyerowitz E M . SUPERMAN, a regulator of floral homeotic genes inArabidopsis. Development, 1992,114:599-615
doi: 10.1016/1043-4666(92)90051-R pmid: 1352237
[30] Kobayashi A, Sakamoto A, Kubo K, Rybka Z, Kanno Y, Takatsuji H . Seven zinc-finger transcription factors are expressed sequentially during the development of anthers in petunia. Plant J, 1998,13:571-576
doi: 10.1046/j.1365-313X.1998.00043.x
[31] 韩莹琰, 张爱红, 范双喜, 曹家树 . 十字花科植物C2H2 型锌指蛋白新基因 BcMF20 同源序列克隆与进化分析. 核农学报, 2011,25:916-921
Han Y Y, Zhang A H, Fan S X, Cao J S . Cloning and Evolutionary Analysis of BcMF20 homologous sequence of a novel C2H2 Zinc finger protein Gene in Cruciferae. J Nucl Agric Sci, 2011,25:916-921 (in Chinese with English abstract)
[32] Sakai H, Medrano L J, Meyerowitz E M . Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries.Nature, 1995,378:199-203
doi: 10.1038/378199a0 pmid: 7477325
[33] 马小艮, 于景印, 唐敏强, 张凤启, 董彩华, 童超波, 黄军艳, 刘胜毅 . 不同菌核病抗性甘蓝型油菜BnVRN2 基因的克隆与表达. 中国油料作物学报, 2015,37:735-743
Ma X G, Yu J Y, Tang M Q, Zhang F Q, Dong C H, Tong C P, Huang J Y, Liu S Y . Cloning and expression of BnVRN2 Gene of Brassica napus with different resistance to Sclerotinia sclerotiorum. Chin J Oil Crop Sci, 2015,37:735-743 (in Chinese with English abstract)
[34] Yao Q Y, Xia E H, Liu F H, Gao L H . Genome-wide identification and comparative expression analysis reveal a rapid expansion and functional divergence of duplicated genes in the WRKY gene family of cabbage, Brassica oleracea var. capitata. Gene, 2015,557:35-42
[35] Kitashiba H, Liu P, Nishio T, Nasrallah J B, Nasrallah M E . Functional test of Brassica self-incompatibility modifiers in Arabidopsis thaliana .Proc Natl Acad Sci USA, 2011,108:18173-18178
[36] 蒲敏, 罗绍兰, 廉小平, 张贺翠, 白晓璟, 王玉奎, 左同鸿, 高启国, 任雪松, 朱利泉 . 自花授粉诱导的甘蓝功能基因BoSPI的克隆与表达分析. 作物学报, 2018,44:177-184
Pu M, Luo S L, Lian X P, Zhang H C, Bai X J, Wang Y K, Zuo T H, Gao Q G, Ren X S, Zhu L Q . Cloning and expression analysis of BoSPI induced by self-pollination in Brassica oleracea L. var. capitata. Acta Agron Sin, 2018,44:177-184 (in Chinese with English abstract)
[37] 刘兆明, 刘宗旨, 白庆武, 方荣祥 . Agroinfiltration 在植物分子生物学研究中的应用. 生物工程学报, 2002,18:411-414
doi: 10.3321/j.issn:1000-3061.2002.04.003
Liu Z M, Liu Z Z, Bai Q W, Fang R X . Application of Agroinfiltration in plant molecular biology. Chin J Biotechnol, 2002,18:411-414 (in Chinese with English abstract)
doi: 10.3321/j.issn:1000-3061.2002.04.003
[38] Li Y, Geng Y F, Song H H, Zheng G Y, Huan L D, Qiu B S . Expression of a human lactoferrin N-lobe in Nicotiana benthmiana with potato virus X-based agroinfection.Biotechnol Lett, 2004,26:953-957
[39] Samuel M A, Chong Y T, Haasen K E , Aldea-Brydges M G, Stone S L, Goring D R. Cellular pathways regulating responses to compatible and self-incompatible pollen in Brassica and Arabidopsis stigmas intersect at Exo70A1, a putative component of the exocyst complex. Plant Cell, 2009,21:2655-2671
[40] Chandna R, Augustine R, Bisht N C . Evaluation of candidate reference genes for gene expression normalization inBrassica juncea using real time quantitative RT-PCR. PLoS One, 2012,7:e36918
[41] 贾双伟, 高英, 赵开军 . 芥菜锌指蛋白转录因子基因Bj26的克隆与鉴定. 作物学报, 2014,40:1174-1181
doi: 10.3724/SP.J.1006.2014.01174
Jia S W, Gao Y, Zhao K J . Cloning and characterization of Brassica juncea zinc finger protein transcription factor gene Bj26. Acta Agron Sin, 2014,40:1174-1181 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01174
[42] Ma X L, Liang W J, Gu P H, Huang Z J . Salt tolerance function of the novel C2H2-type zinc finger protein TaZNF in wheat. Plant Physiol Biochem, 2016,106:129-140
doi: 10.1016/j.plaphy.2016.04.033 pmid: 27156137
[43] Zhang D, Tong J, Xu Z, Wei P, Xu L, Wan Q, Huang Y, He X, Yang J, Sha H, Ma H . Soybean C2H2-type zinc finger protein GmZFP3 with conserved QALGGH motif negatively regulates drought responses in transgenic Arabidopsis. Front Plant Sci, 2016,7:325
[44] Han Y C, Fu C C, Kuang J F, Chen J Y, Lu W J . Two banana fruit ripening-related C2H2 zinc finger proteins are transcriptional repressors of ethylene biosynthetic genes. Postharvest Biol Technol, 2016,116:8-15
doi: 10.1016/j.postharvbio.2015.12.029
[45] Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K . The DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis .Plant Cell, 2001,13:2191-2209
[46] Jiang J J, Jiang J X, Qiu L, Miao Y, Yao L, Cao J S . Identification of gene expression profile during fertilization in Brassica campestris subsp.chinensis. Genome, 2012,56:39-48
[47] Heslop-Harrison Y, Shivanna K R . The receptive surface of the angiosperm stigma. Ann Bot, 1977,41:1233-1258
doi: 10.1093/oxfordjournals.aob.a085414
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 张以忠, 曾文艺, 邓琳琼, 张贺翠, 刘倩莹, 左同鸿, 谢琴琴, 胡燈科, 袁崇墨, 廉小平, 朱利泉. 甘蓝S-位点基因SRKSLGSP11/SCR密码子偏好性分析[J]. 作物学报, 2022, 48(5): 1152-1168.
[6] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[7] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[8] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[11] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[12] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[13] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[14] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[15] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!