欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (11): 1733-1742.doi: 10.3724/SP.J.1006.2018.01733

• 研究简报 • 上一篇    

玉米种胚HSP20基因对人工老化处理的响应

邢芦蔓,吕伟增,雷薇,梁雨欢,卢洋,陈军营()   

  1. 河南农业大学农学院, 河南郑州 450046
  • 收稿日期:2018-03-20 接受日期:2018-07-20 出版日期:2018-11-12 网络出版日期:2018-07-30
  • 通讯作者: 陈军营
  • 基金资助:
    本研究由国家自然科学基金项目(31571761)

Response of HSP20 Genes to Artificial Aging Treatment in Maize Embryo

Lu-Man XING,Wei-Zeng LYU,Wei LEI,Yu-Huan LIANG,Yang LU,Jun-Ying CHEN()   

  1. College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
  • Received:2018-03-20 Accepted:2018-07-20 Published:2018-11-12 Published online:2018-07-30
  • Contact: Jun-Ying CHEN
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31571761)

摘要:

以玉米杂交种“郑单958”为材料, 采用高温(45°C)高湿(100%相对湿度)对玉米种子进行人工老化处理, 并用转录组技术, 研究植物HSP20基因对种子人工老化处理的响应, 旨在为揭示种子衰老的分子机制提供依据。结果表明, 随着老化时间的延长, 种子活力和种胚内过氧化氢酶的活性均表现下降趋势; 过氧化氢含量在老化第3天达到最大值, 随后下降; 丙二醛含量逐渐升高; 转录组检测表明, 种子老化过程中差异显著的HSP20基因有25个, 这些基因编码的HSP20蛋白主要被定位在细胞核、线粒体、以及叶绿体上, 其序列中均含有ACD保守序列(RVDWRETPDAHEIVVDVP GMRREDLRIEVEDNRVLRVSGERRRAEERKGDH WHREERSYGRFWRRFRLPENADLDSVAASLDSGVL TVRFRK)。该序列中含有较多的Arg (11.2%)、Lys (7.2%)、Pro (4.2%)、Thr (3.9%)等氨基酸, 老化过程中积累的ROS可能氧化这些氨基酸, 导致HSP20结构破坏、功能丧失。利用qRT-PCR技术对挑选的编码细胞质、叶绿体和线粒体HSP20的基因的表达模式分析显示, 随着老化程度的加深, 2个编码细胞质HSP20的基因上调表达, 另外两个编码叶绿体和线粒体HSP20基因的表达量在老化第3天达最大值, 随后下降。推测HSP20基因对种子老化有重要作用, HSP20蛋白的ACD结构域中Arg、Lys等氨基酸的靶向氧化可能是种子衰老的主要原因之一。

关键词: 玉米, 种胚, 种子老化, 差异表达基因, HSP20

Abstract:

Maize (Zea mays L.) cultivar ‘Zhengdan 958’ seeds were treated by artificial aging (45°C, 100% relative humidity) and RNA-seq was used to study the response of HSP20 genes to artificial aging treatment of seeds, so as to provide evidences for uncovering the molecular mechanism of seed aging. In the study, the seed vigor decreased dramatically with increasing aging time. The activity of catalase in seed embryo showed a decreasing trend. The content of hydrogen peroxide increased to the maximum at the third day of aging and then decreased. The content of malonaldehyde increased, which indicated that the damage to the membrane system increased. Twenty-five HSP20 genes were identified. These genes encoded HSP20 and mainly distributed in nuclei, mitochondria and chloroplasts. There was a conserved ACD sequence (RVDWRETPDAHEIVVDVPGMRREDLRIEVE DNRVLRVSGERRRAEERKGDHWHREERSYGRFW RRFRLPENADLDSVAASLDSGVLTVRFRK) in HSP20 protein which contains more amino acids, such as Arg (11.2%), Lys (7.2%), Pro (4.2%), and Thr (3.9%). In the aging process these amino acids might be oxidized by ROS accumulated in the embryo, leading to protein structure damaged and loss of functions. The expression patterns of HSP20 genes in cytoplasm, chloroplasts and mitochondria were validated by qRT-PCR, showing that the expressions of cytoplasmic HSP20 genes were up-regulated and those of chloroplast and mitochondrial HSP20 genes reached peak at the third day of aging treatment, and then declined. These suggested that the HSP20 genes play an important role in seeds aging, and the targeted oxidation of Arg, Lys and other amino acids in the ACD structural domain may be an essential cause leading to seed deterioration.

Key words: maize, seed embryo, seed aging, differential expressed genes, HSP20

附表1

HAP20S基因表达分析的引物"

基因ID号
Gene ID
引物序列
Primer sequence (5'-3')
退火温度
Annealing temperature (℃)
产物长度
Product length (bp)
GRMZM2G049767 F GCTGTACTACAGGTAGTATAAC 59 105
R GCACAACACTTCCATACA 59
GRMZM2G306679 F TAGTGATTATCCGTTATGTACTC 59 141
R ACAGAACAGATTGTATTAGGTT 59
GRMZM2G479260 F GTCTTCGTCTTAGTGTTGAT 58.9 109
R TACTCAAGACAGCCATGA 59
GRMZM2G375517 F AGATGTGAATGTGATCTGAC 59 116
R AGTACATATTAACTCACGCAA 58.9
GRMZM5G858128 F TCTAACAGAACTCGCTGA 59 179
R CATCATCATACCACCGATC 59.1
GRMZM2G346839 F CATCATCATACCACCGATC 59.1 179
R TCTAACAGAACTCGCTGA 59
GRMZM2G335242 F GTACGTCTGAATTCTGGTC 59.1 98
R CTCACTCGGATTACTTGC 58.9
GRMZM2G080724 F GATTCATCAGGACGATGAG 59 101
R AAGAAGAGTGGTAGCTAGAT 58.9
GRMZM2G012455 F AGACCATCGAGATTAAGGT 59 179
R ACACATCAGGTAGGATGAT 59
GRMZM2G311710 F ACACATCAGGTAGGATGAT 59 179
R AGACCATCGAGATTAAGGT 59
GRMZM2G333635 F GAGGACAAGAACGACAAG 59.1 154
R TCTTCACCTCCGTCTTAG 59.1
GRMZM2G158232 F TGAGGTGAAGGCTATTGA 59 89
R ATATCGTAGAAGACACAGGA 59
GRMZM2G331701 F ATGACTCAATGACGGAGA 59.1 90
R GCATATACGCTGTCACAA 58.9
GRMZM5G849535 F ATATCGTAGAAGACACAGGA 59 110
R GATATCTGGTTGAGCATCC 59
GRMZM2G034157 F GGTATCACCAATCATCCTATC 59.2 83
R GTTACAAGAGACATGTAGAGAT 58.9
GRMZM2G083810 F ACCAATTCCTATCTGATGTATC 59 112
R GTCAATGAAGACTACGGATTA 59
GRMZM2G332512 F GCTTGTTGTGTTGGTTTC 58.9 117
R CCTTCCAGAAGAACAGAAG 59
GRMZM2G404274 F ACACATCAGGTAGGATGAT 59 179
R AGACCATCGAGATTAAGGT 59
GRMZM2G085934 F CGATGGACATAGTGGAGA 59.2 113
R CTTCATCACTAGCATCCG 58.7
GRMZM2G149647 F GGTCTTTGTGTAGCACTAG 59.1 109
R ATAGCAGAATTGAAGCGTT 59
GRMZM2G098167 F AGAGTAGCAGCAGTAGAAT 59 154
R CAGAGACACGATTGAATAATTC 59
GRMZM2G046382 F GTCGTAATGTCGTAGGATG 59 85
R ATCCATACATAGATTCAGACAC 59
AC208204.3_FGT006 F CAACGTCCTTCAGATCAG 58.9 175
R CACAGTGACTGTAAGCAC 59.4
NM-001155179.1(Actin1) F GTATGAGCAAGGAGATCAC 58.9 194
R TTAGAAGCACTTCATGTGG 59.0

表1

人工老化处理对种子不同活力指标的影响"

处理时间
Treatment time
发芽率
Germination rate (%)
发芽指数
Germination index
活力指数
Vigor index
平均发芽日数
Mean days of germination (d)
0 d 100±0.00 a 9.44±0.25 a 124.14±5.57 a 2.17±0.08 b
1 d 100±0.00 a 8.22±0.54 b 100.07±4.93 b 2.53±0.16 b
2 d 100±0.00 a 8.11±0.25 b 101.32±1.17 b 2.56±0.08 b
3 d 86.67±0.06 b 6.29±0.32 c 75.73±10.45 c 2.86±0.03 b
4 d 66.67±0.08 c 3.96±0.50 d 41.63±5.39 d 3.48±0.11 ab
5 d 21.67±0.10 d 1.11±0.42 e 8.95±1.84 e 4.11±1.02 a

图1

人工老化对种子活力的影响"

表2

人工老化处理对种胚中不同生理指标的影响"

处理时间
Treatment time
过氧化氢酶活性
CAT activity (U g-1 FW min-1)
过氧化氢含量
H2O2 content (μmol g-1 FW)
丙二醛含量
MDA content (μmol g-1 FW)
0 d 0.39±0.11 a 0.38±0.03 b 0.16±0.11 c
1 d 0.26±0.13 a 0.40±0.02 b 0.18±0.03 c
2 d 0.18±0.12 ab 0.42±0.02 b 0.33±0.10 c
3 d 0.14±0.07 b 0.51±0.06 a 0.43±0.19 c
4 d 0.14±0.03 b 0.43±0.02 ab 0.87±0.26 b
5 d 0.06±0.02 b 0.29±0.03 c 1.955±0.21 a

表3

人工老化处理条件下HSP20相关基因及其注释"

基因ID
Gene ID
log2比值
log2 Ratio
P
P-value
错误发现率
False discovery rate
基因注释
Gene annotation
亚细胞定位
Subcellular localization
GRMZM2G481605 8.84 1.89E-259 5.63E-257 17.9 kD class I heat shock protein Nuclear
GRMZM2G049767 8.19 1.07E-164 2.04E-162 17.9 kD class I heat shock protein Nuclear
GRMZM2G306679 7.37 0 0 17.9 kD class I heat shock protein Nuclear
GRMZM2G479260 6.71 0 0 17.9 kD class I heat shock protein Nuclear
GRMZM2G375517 6.70 0 0 17.8 kD class I heat shock protein Cytoplasmic
GRMZM5G858128 6.53 6.93E-222 1.83E-219 22.0 kD class IV heat shock protein Mitochondria
GRMZM2G306714 6.28 0 0 Class I heat shock protein 3 Nuclear
GRMZM2G346839 5.97 7.04E-66 5.89E-64 18.3 kD class I heat shock protein Cytoplasmic
GRMZM2G335242 5.96 0 0 15.7 kD class I heat shock protein Cytoplasmic
GRMZM2G080724 5.61 0 0 Retrotransposon protein [Zea mays] Mitochondrial
GRMZM2G012455 5.19 8.52E-135 1.34E-132 17.6 kD class II heat shock protein Cytoplasmic
GRMZM2G311710 4.98 0 0 17.0 kD class II heat shock protein Nuclear
GRMZM2G333635 4.48 0 0 17.9 kD class I heat shock protein Nuclear
GRMZM2G158232 4.33 0 0 17.9 kD class I heat shock protein Nuclear
GRMZM2G331701 4.31 0 0 18.3 kD class I heat shock Cytoplasmic
GRMZM5G849535 4.30 0 0 16.9 kD class I heat shock protein 1-like Mitochondrial
GRMZM2G034157 4.27 2.84E-22 8.22E-21 17.8 kD class II heat shock protein Cytoplasmic
GRMZM2G083810 4.18 0 0 17.8 kD class II heat shock protein Cytoplasmic
GRMZM2G332512 3.94 1.36E-70 1.22E-68 Heat shock protein18c (hsp18c) Nuclear
GRMZM2G085934 3.88 3.28E-10 4.36E-09 18.6 kD class III heat shock protein Cytoplasmic
GRMZM2G404274 3.88 1.34E-197 3.16E-195 18.0 kD heat shock protein 18a Nuclear
GRMZM2G149647 3.52 0 0 Hsp26 - heat shock protein 26 Chloroplast
GRMZM2G098167 3.49 0 0 17.0 kD class II heat shock protein Cytoplasmic
GRMZM2G046382 3.22 0 0 17.9 kD class I heat shock protein Nuclear
AC208204.3_FG006 3.10 0 0 17.4 kD class I heat shock protein Nuclear

图2

HSP20保守结构域"

表4

ACD结构域序列分析"

基因ID
Gene ID
ACD氨基酸数
Amino acid number
个数/百分比Number/percentage (%)
精氨酸 Arg (R) 赖氨酸 Lys (K) 脯氨酸 Pro (P) 苏氨酸 Thr (T)
GRMZM2G481605 109 12/11.0 3/2.7 3/2.7 4/3.7
GRMZM2G049767 96 14/14.6 5/5.2 4/4.2 3/3.1
GRMZM2G306679 92 9/9.8 10/10.9 4/4.3 3/3.3
GRMZM2G479260 92 8/8.7 9/9.8 3/3.3 8/8.7
GRMZM2G375517 87 16/18.4 4/4.6 4/4.6 3/3.4
GRMZM2G346839 93 17/18.3 2/2.3 3/3.2 2/2.2
GRMZM2G335242 97 6/6.2 8/8.2 7/7.2 4/4.1
GRMZM2G080724 97 10/10.3 4/4.1 6/6.2 3/3.1
GRMZM2G012455 97 11/11.3 5/5.2 2/2.1 3/3.1
GRMZM2G333635 92 8/8.7 11/12 4/4.3 3/3.3
GRMZM2G158232 92 8/8.7 11/12 4/4.3 4/4.3
GRMZM2G331701 92 19/20.7 2/2.2 3/3.3 2/2.3
GRMZM2G034157 98 10/10.2 5/5.1 3/3.1 2/2.0
GRMZM2G083810 87 10/11.5 6/6.9 3/3.4 2/2.3
GRMZM2G085934 78 9/11.5 5/6.4 4/5.1 1/1.3
GRMZM2G149647 107 6/5.6 11/10.3 3/2.8 3/2.8
GRMZM2G098167 113 11/9.7 10/8.8 7/6.2 6/5.3
GRMZM2G046382 92 8/8.7 9/9.8 4/4.3 7/7.6
AC208204.3_FG006 92 8/8.7 9/9.8 4/4.3 7/7.6
平均值Mean 95 11/11.2 7/7.2 4 /4.2 4/3.9

附图1

HSP20s基因在不同老化时间内的表达图中红色字体为文中挑选的4个基因。"

图3

HSP20基因在不同老化时间内的表达误差线上不同小写英文字母表示在0.05水平上的差异显著。"

[1] Mohamed H , Al-Whaibi. Plant heat- shock protein: a mini review. J King Saud Univ Sci, 2011,23:139-150
doi: 10.1016/j.jksus.2010.06.022
[2] Joshi C P, Nguyen H T . Differential display-mediated rapid identification of different members of a multigene family, HSP16.9 in wheat. Plant Mol Biol, 1996,31:575-584
doi: 10.1007/BF00042230
[3] Kyeong K K, Rosalind K, Sung H K . Crystal structure of a small heat-shock protein. Nature, 1998,394:595-599
doi: 10.1038/29106 pmid: 9707123
[4] Haslbeck M . sHsps and their role in the chaperone network. Cell Mol Life Sci, 2002,59:1649-1657
doi: 10.1007/PL00012492 pmid: 12475175
[5] Franck E , Madsen O, van Rheede T, Ricard G, Huynen M A, de Jong W W. Evolutionary diversity of vertebrate small heat shock proteins. J Mol Evol, 2004,59:792-805
doi: 10.1007/s00239-004-0013-z
[6] Seo J S, Lee Y M, Park H G, Lee J S . The intertidal copepod Tigriopus japonicus small heat shock protein 20 gene( Hsp20) enhances thermotolerance of transformed Escherichia coli. Biochem Biophys Res Commun, 2006,340:901-908
[7] Waters E R, Lee G J, Vierling E . Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot, 1996,47:325-338
doi: 10.1093/jxb/47.3.325
[8] Helm K W, Schmeits J, Vierling E . An endomembrane-localized small heat-shock protein fromArabidopsis thaliana.Plant Physiol, 1995,107:287-288
[9] Vierling E . The roles of heat shock proteins in plants. Annu Rev Plant Biol, 1991,42:579-620
doi: 10.1146/annurev.pp.42.060191.003051
[10] Scharf K D, Siddique M, Vierling E . The expanding family ofArabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins). Cell Stress Chaperones, 2001,6:225-237
[11] LaFayette P R, Nagao R T, O’Grady K, Vierling E, Key J L . Molecular characterization of cDNAs encoding low-molecular- weight heat shock proteins of soybean. Plant Mol Biol, 1996,30:159-169
doi: 10.1007/BF00017810
[12] Basha E, Friedrich K L, Vierling E . The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity. J Biol Chem, 2006,281:39943-39952
doi: 10.1074/jbc.M607677200
[13] Jiao W W, Li P L, Zhang J R, Zhang H, Chang Z Y . Small heat-shock proteins function in the insoluble protein complex. Biochem Biophys Res Commun, 2005,335:227-231
doi: 10.1016/j.bbrc.2005.07.065 pmid: 16055090
[14] Prieto-Dapena P, Castano R, Almoguera C, Jordano J . Improved resistance to controlled deterioration in transgenic seeds. Plant Physiol, 2006,142:1102-1112
doi: 10.1104/pp.106.087817
[15] Guo M, Liu J H, Lu J P, Zhai Y F, Wang H, Gong Z H, Wang S B, Lu M H . Genome-wide analysis of theCaHsp20 gene family in pepper: comprehensive sequence and expression profile analysis under heat stress. Front Plant Sci, 2015,6:806
[16] Zhou Y L, Chen H H, Chu P, Li Y, Tan B, Ding Y , Tsang E W T, Jiang L, Wu K, Huang S Z. NnHSP17.5, a cytosolic class II small heat shock protein gene from Nelumbo nucifera, contributes to seed germination vigor and seedling the rmotolerance in transgenic Arabidopsis. Plant Cell Rep, 2012,2:379-389
[17] Kaur H, Petla B P, Kamble N U, Singh A, Rao V . Differentially expressed seed aging responsive heat shock protein OsHSP18.2 implicates in seed vigor, longevity and improves germination and seedling establishment under abiotic stress. Front Plant Sci, 2015,6:713
[18] Chauhan H, Khurana N, Nijhavan A, Khurana J P, Khurana P . The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. Plant Cell Environ, 2012,35:1912-1931
doi: 10.1111/j.1365-3040.2012.02525.x
[19] Muthusamy S K, Dalal M, Chinnusamy V , Bansal B K C. Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat. J Plant Physiol, 2017,211:100-113
doi: 10.1016/j.jplph.2017.01.004
[20] Sun L P, Liu Y, Kong X P, Zhang D, Pan J W, Zhou Y, Wang L, Li D Q, Yang X H . ZmHSP16.9, a cytosolic class I small heat shock protein in maize (Zea mays ), confers heat tolerance in transgenic tobacco. Plant Cell Rep, 2012,31:1473-1484
[21] 孙爱清, 葛淑娟, 董伟, 单晓笛, 董树亭, 张杰道 . 玉米小分子热激蛋白ZmHSP17.7 基因的克隆与功能分析. 作物学报, 2015,41:414-421
Sun A Q, Ge S J, Dong W, Shan X D, Dong S T, Zhang J D . Cloning and function analysis of small heat shock protein gene ZmHSP17.7 from maize. Acta Agron Sin, 2015,41:414-421 (in Chinese with English abstract)
[22] Hu X L, Yang Y F, Gong F P, Zhang D Y, Zhang L, Wu L J, Li C H, Wang W . Protein sHSP26 improves chloroplast performance under heat stress by interacting with specific chloroplast proteins in maize (Zea mays ). J Proteomics, 2015,115:81-92
[23] Basak O, Demir I, Mavi K. Matthews S . Controlled deterioration test for predicting seedling emergence and longevity of pepper (Capsicum annuum L.) seed lots. Seed Sci Technol, 2006,34:701-712
[24] Zhang L, Qiu Z, Hu Y, Yang F, Yan S, Zhao L, Li B, He S, Huang M, Li J, Li L . ABA treatment of germinating maize seeds inducesVP1 gene expression and selective promoter-associated histone acetylation. Physiol Plant, 2011,143:287-296
[25] Jana S, Choudhur M A . Glycolate metabolism of three submersed aquatic angiosperms during ageing. Aquat Bot, 1982,12:345-354
doi: 10.1016/0304-3770(82)90026-2
[26] 李合生 . 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 164- 169, 260-261
Li H S. Experimental Principles and Techniques of Plant Physiological Biochemical. Beijing: Higher Education Press, 2000. pp 164- 169, 260-261(in Chinese)
[27] 曹广灿, 林一欣, 薛梅真, 邢芦蔓, 吕伟增, 杨伟飞, 陈军营 . 玉米种胚内质网胁迫相关基因对人工老化处理的响应. 中国农业科学, 2016,49:429-442
Cao G C, Lin Y X, Xue M Z, Xing L M, Lyu W Z, Yang W F, Chen J Y . Responses of endoplasmic reticulum stress-related genes in maize embryo to artificial aging treatment. Sci Agric Sin, 2016,49:429-442 (in Chinese with English abstract)
[28] Basha E, Neill H O, Vierling E . Small heat shock proteins and alpha-crystallins: dynamic proteins with flexible functions. Trends Biochem Sci, 2012,37:106-117
doi: 10.1016/j.tibs.2011.11.005 pmid: 3460807
[29] Levine R L, Garland D, Oliver C N, Amici A, Climent I, Lenz A G, Ahn B W, Shaltiel S, Stadtman E R . Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol, 1990,186:464-478
doi: 10.1016/0076-6879(90)86141-H
[30] Siddique M, Gernhard S , Koskull-Döring P V, Vierling E, Scharf K D. The plant sHSP superfamily: five new members inArabidopsis thaliana with unexpected properties. Cell Stress Chaperones, 2008,13:183-197
[31] Aung U T , McDonald M B. Changes in esterase activity associated with peanut (Arachis hypogeal L.) seed deterioration. Seed Sci Technol, 1995,23:101-111
doi: 10.1007/BF01276928
[32] Begnami C N, Cortelazzo A L . Cellular alterations during accelerated aging of French bean seeds. Seed Sci Technol, 1996,24:295-303
[33] Thapliyal R C, Connor K F . Effects of accelerated aging on viability, leachate exudation, and fatty acid content ofDalbergia sisso Roxb. Seed Sci Technol, 1997,25:311-319
[34] Rajjou L, Lovigny Y, Groot S P, Belghazi M, Job C, Job D . Proteome-wide characterization of seed aging in Arabidopsis : a comparison between artificial and natural aging protocols.Plant Physiol, 2008,148:620-641
[35] Lee G J, Pokala N, Vierling E . Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J Biol Chem, 1995,270:10432-10438
[36] Kim K H, Alam I, Kim Y G, Sharmin S A, Lee K W, Lee S H, Lee B H . Overexpression of a chloroplast-localized small heat shock protein OsHSP26 confers enhanced tolerance against oxidative and heat stresses in tall fescue. Biotechnol Lett, 2012,34:371-377
doi: 10.1007/s10529-011-0769-3
[37] Lee B H, Won S H, Lee H S, Miyao M, Chung W I, Kim I J, Jo J . Expression of the chloroplast-localized small heat shock protein by oxidative stress in rice. Gene, 2000,245:283-290
doi: 10.1016/S0378-1119(00)00043-3 pmid: 10717479
[38] Hamilton E W, Heckathorn S A . Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol, 2001,126:1266-1274
doi: 10.1104/pp.126.3.1266
[39] Lund A A, Blum P H, Bhattramakki D, Elthon T E . Heat-stress response of maize mitochondria. Plant Physiol, 1998, 116:1097-1110
[40] Smykal P, Masin J, Hrdy I, Konopasek I, Zarsky V . Chaperone activity of tobacco HSP18, a small heat-shock protein, is inhibited by ATP. Plant J, 2000,23:703-713
doi: 10.1046/j.1365-313x.2000.00837.x pmid: 10998182
[41] Lee S H, Lee K W, Lee D G, Son D, Park S J, Kim K Y, Park H S, Cha J Y . Identification and functional characterization of Siberian wild rye (Elymus sibiricus L.) small heat shock protein 16.9 gene( EsHsp16.9) conferring diverse stress tolerance in prokaryotic cells. Biotechnol Lett, 2015,37:881-890
[42] Kim D H, Xu Z Y, Hwang I . AtHSP17.8 overexpression in transgenic lettuce gives rise to dehydration and salt stress resistance phenotypes through modulation of ABA-mediated signaling. Plant Cell Rep, 2013,32:1953-1963
doi: 10.1007/s00299-013-1506-2
[43] Coca M A, Thomas T L, Jordano J . Differential regulation of small heat-shock genes in plants: analysis of a water-stress- inducible and developmentally activated sunflower promoter. Plant Mol Biol, 1996,31:863-876
doi: 10.1007/BF00019473
[44] Chauhan H, Khurana N, Nijhavan A, Khurana J P, Khurnan P . The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. Plant Cell Environ Plant, 2012,35:1912-1931
doi: 10.1111/j.1365-3040.2012.02525.x
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[9] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[10] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[11] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[12] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[13] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[14] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[15] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!