欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (9): 1367-1379.doi: 10.3724/SP.J.1006.2018.01367

• 研究论文 • 上一篇    下一篇

甘蔗ScWRKY4基因的克隆与表达特性分析

王玲1(),刘峰1,戴明剑1,孙婷婷1,苏炜华1,王春风1,张旭1,毛花英1,苏亚春1,2,*(),阙友雄1,2,*()   

  1. 1 福建农林大学 / 农业部福建甘蔗生物学与遗传育种重点实验室, 福建福州 350002
    2 福建农林大学 / 教育部作物遗传育种与综合利用重点实验室, 福建福州 350002
  • 收稿日期:2018-01-28 接受日期:2018-06-12 出版日期:2018-09-10 网络出版日期:2018-07-02
  • 通讯作者: 苏亚春,阙友雄
  • 基金资助:
    本研究由国家自然科学基金项目(31671752和31101196)(31671752);本研究由国家自然科学基金项目(31671752和31101196)(31101196);福建省杰出青年基金项目(2015J06006);福建省高校杰出青年科研人才计划项目(苏亚春-2017)(SYC-2017);国家现代农业产业技术体系建设专项(CARS-17)资助

Cloning and Expression Characteristic Analysis of ScWRKY4 Gene in Sugarcane

Ling WANG1(),Feng LIU1,Ming-Jian DAI1,Ting-Ting SUN1,Wei-Hua SU1,Chun-Feng WANG1,Xu ZHANG1,Hua-Ying MAO1,Ya-Chun SU1,2,*(),You-Xiong QUE1,2,*()   

  1. 1 Key Laboratory of Sugarcane Biology and Genetic Breeding (Fujian), Ministry of Agriculture / Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    2 Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education / Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China;
  • Received:2018-01-28 Accepted:2018-06-12 Published:2018-09-10 Published online:2018-07-02
  • Contact: Ya-Chun SU,You-Xiong QUE
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31671752);This study was supported by the National Natural Science Foundation of China(31101196);Natural Science Foundation of Fujian Province for Distinguished Young Scholars(2015J06006);Research Funds for Distinguished Young Scientists in Fujian Provincial Department of Education(SYC-2017);China Agriculture Research System (CARS-17)

摘要:

WRKY是植物中特有的转录因子家族之一, 在植物对生物和非生物逆境胁迫的应答反应中起重要调控作用。本研究基于课题组前期构建的甘蔗(Saccharum spp.)转录组数据库, 从新台糖22 (ROC22)中成功克隆到1个WRKY基因, 命名为ScWRKY4 (GenBank登录号为MG852087)。序列分析发现, ScWRKY4基因cDNA全长1265 bp, 包含1个741 bp的完整开放读码框, 编码246个氨基酸, 该蛋白具有1个WRKYGQK保守结构域和C2H2锌指结构域, 属于IIc类WRKY转录因子。生物信息学预测分析发现, ScWRKY4蛋白为碱性的不稳定亲水性蛋白, 不存在信号肽和跨膜结构域, 蛋白二级结构元件缺少β螺旋。在本氏烟(Nicotiana benthamiana)叶片瞬时表达中, ScWRKY4蛋白定位于细胞核。酵母杂交实验结果显示, ScWRKY4不具有转录激活活性。实时荧光定量PCR分析表明, ScWRKY4基因在甘蔗的根、叶、芽和皮中的表达量无明显差异, 在蔗肉中的表达量最高, 为对照蔗根的18.38倍; 黑穗病菌侵染0~72 h, ScWRKY4在抗病品种崖城05-179中下调表达, 在感病品种ROC22中表达较稳定; 受到外源激素脱落酸、水杨酸和茉莉酸甲酯以及非生物胁迫因子氯化钠和聚乙二醇胁迫后, ScWRKY4基因均被诱导上调表达。上述研究结果表明, ScWRKY4基因可能不参与甘蔗对黑穗病的抗性反应或在该防御方面起负调控作用, 但积极响应甘蔗对盐和干旱胁迫的应答。

关键词: 甘蔗, WRKY转录因子, 生物信息学, 亚细胞定位, 转录激活活性, 实时荧光定量PCR

Abstract:

WRKY is one of the specific transcriptional regulators in plants and widely involved in the response of plants to diverse biotic and abiotic stresses. In this study, based on our previous transcriptome data of sugarcane (Saccharum spp.), we successfully cloned a WRKY gene from sugarcane variety ROC22, named as ScWRKY4 (GenBank accession number MG852087). Sequence analysis showed that the full-length cDNA of ScWRKY4 gene was 1265 bp, containing a 741 bp complete open reading frame and encoding 246 amino acids residues. ScWRKY4 protein had a conservative WRKYGQK domain and a zinc finger motif C2H2, belonging to IIc subgroup of WRKY transcription factor family. Bioinformatics analysis indicated that ScWRKY4 was an alkaline unstable hydrophilic protein with no signal peptide and transmembrane structure. The secondary structural element of ScWRKY4 protein was lack of beta helix structure. ScWRKY4 was located in the nucleus after transient expression in Nicotiana benthamiana. The result of yeast hybridization experiment demonstrated that ScWRKY4 did not possess transcriptional activity. Real-time fluorescent quantitative PCR showed that the expression of ScWRKY4 gene had no significant difference in root, leaf, bud and stem epidermis, while had the highest expression level in stem pith, which was 18.38 times higher than that in root. During inoculation with smut pathogen (Sporisorium scitamineum) at 0-72 h, the gene expression level of ScWRKY4 was down-regulated in sugarcane smut-resistant cultivar Yacheng 05-179, while was more stable in the susceptible one ROC22. The transcript of ScWRKY4 was up-regulated by exogenous hormone stresses of abscisic acid, salicylic acid, and methyl jasmonate, as well as by the abiotic treatments of sodium chloride and polyethylene glycol. These results suggest that ScWRKY4 gene may not participate in sugarcane smut resistance, or only play a negative role in this defense reaction, but positively involve in the response mechanism of salt and drought resistance in sugarcane.

Key words: sugarcane, WRKY transcription factor, bioinformatics, subcellular localization, transcriptional activity, real-time flourescent quantitative PCR

表1

引物序列及用途"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
用途
Usage
ScWRKY4-F TCCTCGGCATCTCCCATTCT 扩增全长
Full length amplifcation
ScWRKY4-R GTCTGGGAGCTCATGTTCGT
ScWRKY4-QF ATGAAGGTGAGGAGGAAGATG 荧光定量
qRT-PCR
ScWRKY4-QR CTTGTAGCCGTCGTCCAG
GAPDH-QF CACGGCCACTGGAAGCA 内参基因
Reference gene
GAPDH-QR TCCTCAGGGTTCCTGATGCC
ScWRKY4-Subloc-F CGGGATCCATGGAGGGGAGCA 亚细胞定位
Subcellular localization
ScWRKY4-Subloc-R TGCTCTAGAGAGCGACGTGAAAGC
ScWRKY4-BD-F GGAATTCCATATGATGGAGGGGAGCAGCCAGCT 转录激活
Transactivation
ScWRKY4-BD-R CGGGATCCGAGCGACGTGAAAGCGCAGC

图1

甘蔗ScWRKY4基因的PCR扩增 M: 15000+2000 bp DNA marker; 1: PCR产物。"

图2

PCR扩增获得的ScWRKY4基因的核酸序列及其推导的氨基酸序列(*: 终止密码子) 红色框部分为WRKYGQK基序; 黑色框部分为C2H2基序(CX4CX23HXH)。"

图3

甘蔗ScWRKY4蛋白的保守结构域分析"

图4

甘蔗ScWRKY4与其他植物WRKY蛋白的氨基酸序列比对高粱: SbWRKY57 (XP_002448267.2); 玉米: ZmWRKY36 (NP_001151912.1); II型少花古尔德草: DoWWRKY12 (OEL21317.1); 谷子: SiWRKY12 (XP_004956420.1); 二穗短柄草: BdWRKY12 (XP_014751531.1); 水稻: OsWRKY12 (XP_015635033.1)。"

图5

ScWRKY4蛋白与甘蔗及其他植物WRKY蛋白家族的系统进化树"

图6

甘蔗ScWRKY4亚细胞定位分析(A) 35S::ScWRKY4::GFP亚细胞定位重组载体的酶切验证结果。1: 15000+2000 bp DNA marker; 2: 35S::GFP/Xba I; 3: ScWRKY4 ORF PCR产物; 4: 35S::ScWRKY4::GFP/Xba I; 5: 35S::ScWRKY4::GFP/Xba I+BamH I; 6: 100 bp ladder DNA marker。(B) 农杆菌介导转化的ScWRKY4及空载体注射本氏烟叶片48 h的亚细胞定位结果。本氏烟叶片表皮细胞被用于明场、绿色荧光、蓝色荧光、明场和绿色及蓝色荧光叠加后的图像分析; 白色箭头1、2和3分别表示质膜、细胞核和细胞质, 比例尺=25 μm; 35S::GFP: 携带空载pCAMBIA 1300-GFP的农杆菌菌株; 35S::ScWRKY4::GFP: 携带重组载体pCAMBIA 1300-ScWRKY4-GFP的农杆菌菌株; DAPI: 4’,6-二脒基-2-苯基吲哚。"

图7

甘蔗ScWRKY4转录激活活性分析(A) pGBKT7-ScWRKY4重组载体的酶切验证结果。1: 15000+2000 bp DNA marker; 2: pGBKT7/Nde I; 3: ScWRKY4 ORF PCR产物; 4: pGBKT7-ScWRKY4/Nde I; 5: pGBKT7-ScWRKY4/Nde I+BamH I; 6: 2000 bp ladder DNA marker。(B) ScWRKY4转录激活活性验证。SD/-Trp: 色氨酸营养缺陷型平板培养基; SD/-Trp (+ X-α-Gal): 色氨酸营养缺陷型平板培养基(添加5-溴-4-氯-3-吲哚-α-D-半乳糖苷); SD/-Trp (+ X-α-Gal+AbA): 色氨酸营养缺陷型平板培养基(添加5-溴-4-氯-3-吲哚-α-D-半乳糖苷和金担子素A)。"

图8

ScWRKY4基因在甘蔗ROC22组织中的表达情况柱上不同的小写字母代表显著性的差异(P ≤ 0.05); n = 3; 内参基因为甘油醛-3-磷酸脱氢酶(glyceraldehyde-3-phosphate dehydrogenase, GAPDH); R: 蔗根; B: 蔗芽; L: 蔗叶; SP: 蔗肉; SE: 蔗皮。"

图9

甘蔗ScWRKY4基因在黑穗病侵染下的表达情况 Yacheng 05-179: 甘蔗抗黑穗病品种; ROC22: 甘蔗感黑穗病品种。柱上不同的小写字母代表显著性的差异(P ≤ 0.05); n = 3; 内参基因为甘油醛-3-磷酸脱氢酶(glyceraldehyde-3-phosphatedehydrogenase, GAPDH)。"

图10

甘蔗ScWRKY4基因在不同植物激素和非生物胁迫下的表达水平柱上不同的小写字母代表显著性的差异(P ≤ 0.05); n = 3; 内参基因为甘油醛-3-磷酸脱氢酶(glyceraldehyde-3-phosphate dehydrogenase, GAPDH); SA: 水杨酸(5 mmol L-1); MeJA: 茉莉酸甲酯(25 μmol L-1); NaCl: 氯化钠(模拟盐胁迫) (250 mmol L-1); PEG: 聚乙二醇(模拟干旱胁迫) (25.0%); ABA: 脱落酸(100 μmol L-1)。"

[1] Porto M S , Pinheiro M P N, Batista V G L, Santos R C D, Filho P A M, Lima L M. Plant promoters: an approach of structure and function. Mol Biotechnol, 2014,56:38-49
doi: 10.1007/s12033-013-9713-1 pmid: 24122284
[2] 李田, 孙景宽, 刘京涛 . 植物转录因子家族在耐盐抗旱调控网络中的作用. 生命科学, 2015,27:217-227
Li T, Sun J K, Liu J T . Role of different transcription factor families in the regulatory networks of drought and salinity tolerance in plants. Chin Bull Life Sci, 2015,27:217-227 (in Chinese with English abstract)
[3] Ishiguro S, Nakamura K . Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5’ upstream regions of genes coding for sporamin and beta-amylase from sweet potato. Mol Gen Genet, 1994,244:563-571
[4] Eulgem T, Somssich I E . Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol, 2007,10:366-371
doi: 10.1016/j.pbi.2007.04.020 pmid: 17644023
[5] Song Y, Ai C R, Jing S J, Yu D Q . Research progress on function analysis of rice WRKY genes. Rice Sci, 2010,17:60-72
[6] Pandey S P, Somssich I E . The role of WRKY transcription factors in plant immunity. Plant Physiol, 2009,150:1648-1655
[7] Mangelsen E, Kilian J, Berendzen K W, Kolukisaoglu Ü H, Harter K, Jansson C, Wanke D . Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare) WRKY transcription factor family reveals putatively retained functions between monocots and dicots. BMC Genomics, 2008,9:194
[8] Wei K F, Chen J, Chen Y F, Wu L J, Xie D X . Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize. DNA Res, 2012,19:153-164
[9] Rushton P J, Torres J T, Parniske M, Parniske M, Wernert P, Hahlbrock K, Somssich L M . Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J, 1996,15:5690-5700
[10] Dong J, Chen C H, Chen Z X . Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol, 2003,51:21-37
[11] Liu D L, Leib K, Zhao P Y, Kogel K H, Langen G . Phylogenetic analysis of barley WRKY proteins and characterization of HvWRKY1 and repressors of the pathogen-inducible gene HvGER4c. Mol Genet Genomics, 2014,289:1331-1345
[12] Ramamoorthy R, Jiang S Y, Kumar N, Venkatesh P N, Ramachandran S . A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol, 2008,49:865-879
[13] Qiu D, Xiao J, Xie W B, Liu H B, Li X H, Xiong L Z, Wang S P . Rice gene network inferred from expression profiling of plants overexpressing OsWRKY13, a positive regulator of disease resistance. Mol Plant, 2008,1:538-551
[14] Peng Y, Bartley L E, Chen X W, Dardick C, Chern M, Ruan R, Canlas P E, Ronald P C . OsWRKY62 is a negative regulator of basal and Xa21-mediated defense against Xanthomonas orvzae pv. orvzae in rice. Mol Plant, 2008,1:446-458
[15] 魏晓爱, 姚文静, 姜廷波, 周博如 . 拟南芥WRKY基因家族应答非生物胁迫基因的鉴定. 东北林业大学学报, 2016,44(10):45-48
Wei X A, Yao W J, Jiang T B, Zhou B R . Identification of WRKY gene in response to abiotic stress from WRKY transcirption factor gene family of Arabidopsis thaliana. . J Northeast For Univ, 2016,44(10):45-48 (in Chinese with English abstract)
[16] Wu J, Chen J B, Wang L F, Wang S M . Genome-wide investigation of WRKY transcription factors involved in terminal drought stress response in common bean. Front Plant Sci, 2017,8:380
[17] Jiang Y Z, Duan Y J, Jia Y, Ye S L, Zhu J R, Zhang F Q, Lu W X, Fan D, Luo K M . Genome-wide identification and characterization of the Populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses. J Exp Bot, 2014,65:6629-6644
[18] Zhang T, Tan D, Zhang L, Zhang X, Han Z . Phylogenetic analysis and drought-responsive expression profiles of the WRKY transcription factor family in maize. Agric Gene, 2017,3:99-108
[19] Liu J X, Que Y X, Guo J L, Xu L P, Wu J Y, Chen R K . Molecular cloning and expression analysis of a WRKY transcription factor in sugarcane. Afr J Biotechnol, 2012,11:6434-6444
doi: 10.5897/AJB11.3602
[20] 黄宁, 张玉叶, 凌辉, 罗俊, 吴期滨, 阙友雄 . 甘蔗二氨基庚二酸异构酶基因的克隆与表达分析. 热带作物学报, 2013,34:2200-2208
Huang N, Zhang Y Y, Ling H, Luo J, Wu Q B, Que Y X . Cloning and expression analysis of a diaminopimelate epimerase gene in sugarcane. Chin J Trop Crops 2013,34:2200-2208 (in Chinese with English abstract)
[21] Que Y X, Su Y C, Guo J L, Wu Q B, Xu L P . A global view of transcriptome dynamics during Sporisorium scitamineum challenge in sugarcane by RNA-Seq. PLoS One, 2014,9:e106476
[22] Wei K, Chen J, Chen Y F, Wu L J, Xie D X . Multiple-strategy analyses of ZmWRKY subgroups and functional exploration of ZmWRKY genes in pathogen responses. Mol Biosyst, 2012,8:1940-1949
[23] 苏亚春 . 甘蔗应答黑穗病菌侵染的转录组与蛋白组研究及抗性相关基因挖掘. 福建农林大学博士学位论文, 福建福州, 2014
Su Y C . Transcriptomics and Proteomics of Sugarcane Response to Sporisorium scitamineum Infection and Mining of Resistance-Related Genes. PhD Dissertation of Fujian Agriculture and Forestry University, Fuzhou, Fujian,China, 2014 ( in Chinese with English abstract)
[24] Zhou X J, Yan S W, Sun C, Li S Z, Li J, Xu M Y, Liu X Q, Zhang S J, Zhao Q Q, Li Y, Fan Y L, Chen R M, Wang L . A maize jasmonate zim-domain protein, ZmJAZ14, associates with the JA, ABA, and GA signaling pathways in transgenic Arabidopsis. PLoS One, 2015,10:e0121824
[25] 阙友雄, 许莉萍, 徐景升, 张积森, 张木清, 陈如凯 . 甘蔗基因表达定量PCR分析中内参基因的选择. 热带作物学报, 2009,30:274-278
Que Y X, Xu L P, Xu J S, Zhang J S, Zhang M Q, Chen R K . Reference gene selection in quantitative PCR analysis of gene expression in sugarcane. Chin J Trop Crops 2009,30:274-278 (in Chinese with English abstract)
[26] Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method . Methods, 2001,25:402-408
[27] 苏亚春, 王竹青, 李竹, 刘峰, 许莉萍, 阙友雄, 戴明剑, 陈允浩 . 甘蔗过氧化物酶基因ScPOD02的克隆与功能鉴定. 作物学报, 2017,43:510-521
Su Y C, Wang Z Q, Li Z, Liu F, Xu L P, Que Y X, Dai M J, Chen Y H . Molecular cloning and functional identification of peroxidase gene ScPOD02 in sugarcane. . Acta Agron Sin 2017,43:510-521 (in Chinese with English abstract)
[28] Yadav R L, Solomon S . Potential of developing sugarcane by-product based industries in India. Sugar Tech, 2006,8:104-111
doi: 10.1007/BF02943642
[29] 付瑜华, 卢加举, 李向勇 . 甘蔗主要病害抗病遗传育种研究进展. 生物技术通报, 2014,45(2):1-6
Fu Y H, Lu J J, Li X Y . Progress on disease-resistant breeding of major diseases in sugarcane. Biotechnol Bull, 2014,45(2):1-6 (in Chinese with English abstract)
[30] Eulgem T, Rushton P J, Robatzek S, Somssich I E . The WRKY superfamily of plant transcription factor. Trends Plant Sci, 2000,5:199-206
doi: 10.1016/S1360-1385(00)01600-9 pmid: 10785665
[31] Zhang Y J, Wang L J . The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evol Biol, 2005,5:1-12
doi: 10.1186/1471-2148-5-1 pmid: 544883
[32] 向小华, 吴新儒, 晁江涛, 杨明磊, 杨帆, 陈果, 刘贯山, 王元英 . 普通烟草WRKY基因家族的鉴定及表达分析. 遗传, 2016,38:840-856
Xiang X H, Wu X R, Chao J T, Yang M L, Yang F, Chen G, Liu G S, Wang Y Y . Genome-wide identification and expression analysis of the WRKY gene family in common tobacco (Nicotiana tabacum L.) Hereditas (Beijing), 2016,38:840-856 (in Chinese with English abstract)
[33] 彭俊楚 . 大豆GmWRKYs基因的克隆和功能研究. 华南农业大学博士学位论文, 广东广州, 2016
Peng J C . Isolation and Function Analysis of Soybean GmWRKYs. PhD Dissertation of South China Agricultural University, Guangzhou, Guangdong, China, 2016 ( in Chinese with English abstract)
[34] 徐群刚, 邝健飞, 单伟, 陆旺金, 陈建业 . 香蕉果实冷胁迫相关MaWRKY11转录因子的特性、互作蛋白筛选与鉴定. 热带亚热带植物学报, 2015,23:543-552
Xu Q G, Kuang J F, Shan W, Lu W J, Chen J Y . Characterization and interacting-protein identification of MaWRKY11 transcription factor related to cold stress from banana fruits.. J Trop Subtrop Bot 2015,23:543-552 (in Chinese with English abstract)
[35] Jing J J, Ma S, Ye N H, Jing M, Cao J S, Zhang J H . WRKY transcription factors in plant responses to stresses. J Integr Plant Biol, 2017,59:86-101
doi: 10.1111/jipb.12513 pmid: 27995748
[36] Kim K C, Lai Z, Fan B, Chen Z . Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. . Plant Cell, 2008,20:2357-2371
[37] Song Y, Jing S J, Yu D Q . Overexpression of the stress-induced OsWRKY08, improves osmotic stress tolerance in Arabidopsis. Chin Sci Bull, 2009,54:4671-4678
[38] Ren X, Chen Z, Liu Y, Zhang H R, Zhang M, Liu Q, Hong X H, Zhu J K, Gong Z Z . ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J, 2010,63:417-429
[1] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[2] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[3] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[4] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[5] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[6] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[7] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341.
[8] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[9] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[10] 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530.
[11] 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价[J]. 作物学报, 2021, 47(8): 1531-1539.
[12] 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296.
[13] 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042.
[14] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893.
[15] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!