作物学报 ›› 2019, Vol. 45 ›› Issue (2): 175-187.doi: 10.3724/SP.J.1006.2019.84093
曲存民1,2,马国强1,2,朱美晨1,2,黄小虎1,2,贾乐东1,2,王书贤1,2,赵会彦1,2,徐新福1,2,卢坤1,2,李加纳1,2,*(),王瑞1,2,*()
Cun-Min QU1,2,Guo-Qiang MA1,2,Mei-Chen ZHU1,2,Xiao-Hu HUANG1,2,Le-Dong JIA1,2,Shu-Xian WANG1,2,Hui-Yan ZHAO1,2,Xin-Fu XU1,2,Kun LU1,2,Jia-Na LI1,2,*(),Rui WANG1,2,*()
摘要:
油菜是修复土壤重金属污染的理想作物, 为筛选甘蓝型油菜耐砷性的显著关联单核苷酸多态性位点及相关候选基因, 本研究以140份不同来源的甘蓝型油菜自交系为材料, 测定和利用油菜60K SNP芯片对正常和砷胁迫条件下的相对根长(RRL)、相对下胚轴长(RHL)和相对鲜重(RFW)进行了全基因组关联分析。结果表明, 与RRL、RHL和RFW显著关联的SNP位点分别为15、20和35个, 单个SNP位点表型贡献率分别介于13.31%~24.39%、18.04%~33.82%和20.19%~25.06%之间; 其中在A02、A07和C02染色体上同时存在与RRL、RHL和RFW显著关联的LD区间。基于油菜基因组信息在LD区间内共筛选到61个可能与砷胁迫相关的候选基因, 其中PHT3;3、PHT1;9、GST、OTC5、NRAMP1和ZIP12等与重金属吸收和转运相关。实时荧光定量PCR分析结果表明, PHT3;3和PHT1;9是与甘蓝型油菜砷离子吸收转运相关的重要候选基因。本研究结果对于甘蓝型油菜耐砷胁迫机理的研究、性状的改良具有重要参考价值。
[1] | Panaullah G M, Alam T, Hossain M B, Loeppert R H, Lauren J G, Meisner C A, Ahmed Z U, Duxbury J M . Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh. Plant Soil, 2008,317:31. |
[2] |
Finnegan P M, Chen W . Arsenic toxicity: the effects on plant metabolism. Front Physiol, 2012,3:182.
doi: 10.3389/fphys.2012.00182 pmid: 22685440 |
[3] |
谭万能, 李志安, 邹碧 . 植物对重金属耐性的分子生态机理. 植物生态学报, 2006,30:703-712.
doi: 10.17521/cjpe.2006.0092 |
Tan W A, Li Z A, Zou B . Molecular mechanisms of plant tolerance to heavy metals. J Plant Ecol, 2006,30:703-712 (in Chinese with English abstract).
doi: 10.17521/cjpe.2006.0092 |
|
[4] |
Lindsay E R, Maathuis F J M . New molecular mechanisms to reduce arsenic in crops. Trends Plant Sci, 2017,22:1016-1026.
doi: 10.1016/j.tplants.2017.09.015 pmid: 29056439 |
[5] | Isayenkov S V, Maathuis F J M . The Arabidopsis thaliana aquaglyceroporin AtNIP7;1 is a pathway for arsenite uptake. FEBS Lett, 2008,582:1625-1628. |
[6] |
Xu W, Dai W, Yan H, Li S, Shen H, Chen Y, Xu H, Sun Y, He Z, Ma M . Arabidopsis NIP3;1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions. Mol Plant, 2015,8:722-733.
doi: 10.1016/j.molp.2015.01.005 pmid: 25732589 |
[7] | Kamiya T, Tanaka M, Mitani N, Ma J F, Maeshima M, Fujiwara T . NIP1;1, an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis thaliana. J Biol Chem, 2009,284:2114-2120. |
[8] |
Chen Y, Sun S K, Tang Z, Liu G, Moore K L, Maathuis F J M, Miller A J, McGrath S P, Zhao F J . The Nodulin 26-like intrinsic membrane protein OsNIP3;2 is involved in arsenite uptake by lateral roots in rice. J Exp Bot, 2017,68:3007-3016.
doi: 10.1093/jxb/erx165 pmid: 28505352 |
[9] | Sun S K, Chen Y, Che J, Noriyuki K, Tang Z, Miller A J, Ma J F, Zhao F J . Decreasing arsenic accumulation in rice by overexpressing OsNIP1;1 and OsNIP3; 3 through disrupting arsenite radial transport in roots. New Phytol, 2018, 15190. |
[10] |
Chao D Y, Chen Y, Chen J, Shi S, Chen Z, Wang C, Danku J M, Zhao F J, Salt D E . Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants. PLoS Biol, 2014,12:e1002009.
doi: 10.1371/journal.pbio.1002009 pmid: 4251824 |
[11] |
李洋, 于丽杰, 金晓霞 . 植物重金属胁迫耐受机制. 中国生物工程杂志, 2015, ( 9):94-104.
doi: 10.13523/j.cb.20150914 |
Li Y, Yu L J, Jin X X . Mechanism of heavy metal tolerance stress of plants. China Biotech, 2015, ( 9):94-104 (in Chinese with English abstract).
doi: 10.13523/j.cb.20150914 |
|
[12] |
Cojocaru P, Gusiatin Z M, Cretescu I . Phytoextraction of Cd and Zn as single or mixed pollutants from soil by rape (Brassica napus). Environ Sci Poll Res, 2016,23:10693-10701.
doi: 10.1007/s11356-016-6176-5 pmid: 26884243 |
[13] | Gasic K, Korban S S . Expression of Arabidopsis phytochelatin synthase in Indian mustard(Brassica juncea) plants enhances tolerance for Cd and Zn. Planta, 2007,225:1277-1285. |
[14] | Marchiol L, Assolari S, Sacco P, Zerbi G . Phytoextraction of heavy metals by canola (Brassica napus) and radish(Raphanus sativus) grown on multicontaminated soil. Environl Poll, 2004,132:211. |
[15] |
Touiserkani T, Haddad R . Cadmium-induced stress and antioxidative responses in different Brassica napus cultivars. J Agric Sci Tech-IRAN, 2012,14:929-937.
doi: 10.1016/j.agee.2012.04.006 |
[16] |
宋俊英 . 芸薹属植物对砷胁迫的反应及其机理研究. 华中农业大学硕士学位论文,湖北武汉, 2010.
doi: 10.7666/d.y1805482 |
Song J Y . Responses of Brassica Species to Arsenic Stress and Their Mechanisms. PhD Dissertation of Huazhong Agriculture University, Hubei, Wuhan,China, 2010.
doi: 10.7666/d.y1805482 |
|
[17] |
张蕊, 邓文亚, 杨柳, 王亚萍, 肖芳枝, 禾健, 卢坤 . 盐胁迫下甘蓝型油菜发芽期下胚轴和根长的全基因组关联分析. 中国农业科学, 2017,50:15-27.
doi: 10.3864/j.issn.0578-1752.2017.01.002 |
Zhang R, Deng Y W, Yang L, Wang Y P, Xiao Y Z, He J, Lu K . Genome-wide association study of root length and hypocotyl length at germination stage under saline conditions in Brassica napus. Sci Agric Sin, 2017,50:15-27 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.01.002 |
|
[18] |
Munns R, James R A . Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant & Soil, 2003,253:201-218.
doi: 10.1023/A:1024553303144 |
[19] |
卢坤, 王腾岳, 徐新福, 唐章林, 曲存民, 贺斌, 梁颖, 李加纳 . 甘蓝型油菜结角高度与荚层厚度的全基因组关联分析. 作物学报, 2016,42:344-352.
doi: 10.3724/SP.J.1006.2016.000344 |
Lu K, Wang T Y, Xu X F, Tang Z L, Qu C M, He B, Liang Y, Li J N . Genome-wide association analysis of height of podding and thickness of pod canopy in Brassica napus. Acta Agron Sin, 2016,42:344-352 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.000344 |
|
[20] | Pritchard J K, Stephens M, Donnelly P . Inference of population structure using multilocus genotype data. Genetics, 2000,155:945. |
[21] |
Evanno G, Regnaut S, Goudet J . Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol, 2005,14:2611-2620.
doi: 10.1111/mec.2005.14.issue-8 |
[22] |
Hardy O, Vekemans X . SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes, 2002,2:618-620.
doi: 10.1046/j.1471-8286.2002.00305.x |
[23] |
Wang S B, Feng J Y, Ren W L, Huang B, Zhou L, Wen Y J, Zhang J, Dunwell J M, Xu S, Zhang Y M . Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Sci Rep, 2016,6:19444.
doi: 10.1038/srep19444 pmid: 4726296 |
[24] |
Tamba C L, Ni Y L, Zhang Y M . Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies. PLoS Comput Biol, 2017,13:e1005357.
doi: 10.1371/journal.pcbi.1005357 pmid: 5308866 |
[25] | Chalhoub B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B , 72 others. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014,345:950-953. |
[26] |
Zhou Y, Xu D, Jia L, Huang X, Ma G, Wang S, Zhu M, Zhang A, Guan M, Lu K . Genome-wide identification and structural analysis of bZIP transcription factor genes in Brassica napus. Genes, 2017,8:288.
doi: 10.3390/genes8100288 pmid: 5664138 |
[27] |
Lu K, Li T, He J, Chang W, Zhang R, Liu M, Yu M, Fan Y, Ma J, Sun W . qPrimerDB: a thermodynamics-based gene-specific qPCR primer database for 147 organisms. Nucl Acids Res, 2018,46:D1229-D1236.
doi: 10.1093/nar/gkx725 pmid: 5753361 |
[28] | Lee S H, Li C W, Koh K W, Chuang H Y, Chen Y R, Lin C S, Chan M T . MSRB7 reverses oxidation of GSTF2/3 to confertolerance of Arabidopsis thaliana to oxidative stress. J Exp Bot, 2014,65:5049-5062. |
[29] |
Mao Z, Sun W . Arabidopsis seed-specific vacuolar aquaporins are involved in maintaining seed longevity under the control of Abscisic acid insensitive 3. J Exp Bot, 2015,66:4781-4794.
doi: 10.1093/jxb/erv244 pmid: 4507774 |
[30] |
Kang J, Yim S, Choi H, Kim A, Lee K P, Lopezmolina L, Martinoia E, Lee Y . Abscisic acid transporters cooperate to control seed germination. Nat Commun, 2015,6:8113.
doi: 10.1038/ncomms9113 pmid: 4569717 |
[31] |
Pandey C, Khan E, Panthri M, Tripathi R D, Gupta M . Impact of silicon on Indian mustard (Brassica juncea L.) root traits by regulating growth parameters, cellular antioxidants and stress modulators under arsenic stress. Plant Physiol Biochem, 2016,104:216-225.
doi: 10.1016/j.plaphy.2016.03.032 pmid: 27038600 |
[32] |
Hatzig S V, Frisch M, Breuer F, Nesi N, Ducournau S, Wagner M H, Leckband G, Abbadi A, Snowdon R J . Genome-wide association mapping unravels the genetic control of seed germination and vigor in Brassica napus. Front Plant Sci, 2015, doi: 10.3389/fpls.2015.00221.
doi: 10.3389/fpls.2015.00221 pmid: 25914704 |
[33] |
Luo X, Ma C, Yue Y, Hu K, Li Y, Duan Z, Wu M, Tu J, Shen J, Yi B . Unravelling the complex trait of harvest index in rapeseed (Brassica napus L.) with association mapping. BMC Genomics, 2015,16:379.
doi: 10.1186/s12864-015-1607-0 pmid: 25962630 |
[34] |
Li F, Chen B, Xu K, Wu J, Song W, Bancroft I, Harper AL, Trick M, Liu S, Gao G . Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.). DNA Res, 2014,21:355-367.
doi: 10.1093/dnares/dsu002 pmid: 24510440 |
[35] |
Chen L, Wan H, Qian J, Guo J, Sun C, Wen J, Yi B, Ma C, Tu J, Song L . Genome-wide association study of cadmium accumulation at the seedling stage in rapeseed (Brassica napus L.). Front Plant Sci, 2018,9:375.
doi: 10.3389/fpls.2018.00375 |
[36] | Meharg A A, Macnair M R . An altered phosphate uptake system in arsenate-tolerant Holcus lanatus L. New Phytol, 1990,116:29-35. |
[37] |
Shin H, Shin H S, Dewbre G R, Harrison M J . Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J, 2004,39:629-642.
doi: 10.1111/j.1365-313X.2004.02161.x pmid: 15272879 |
[38] |
Nagarajan V K, Jain A, Poling M D, Lewis A J, Raghothama K G, Smith A P . Arabidopsis Pht1;5 mobilizes phosphate between source and sink organs and influences the interaction between phosphate homeostasis and ethylene signaling. Plant Physiol, 2011,156:1149.
doi: 10.1104/pp.111.174805 pmid: 21628630 |
[39] | Remy E, Cabrito T R, Batista R A, Teixeira M C, Sá-Correia I, Duque P . The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation. New Phytol, 2012,195:356-371. |
[40] | Lapis-Gaza H R, Jost R, Finnegan P M . Arabidopsis Phosphate transporter1 genes PHT1;8 and PHT1;9 are involved in root-to-shoot translocation of orthophosphate. BMC Plant Biol, 2014,14:334. |
[41] |
Zhu W, Miao Q, Sun D, Yang G, Wu C, Huang J, Zheng C . The mitochondrial phosphate transporters modulate plant responses to salt stress via affecting ATP and gibberellin metabolism in Arabidopsis thaliana. PLoS One, 2012,7:e43530.
doi: 10.1371/journal.pone.0043530 pmid: 22937061 |
[42] | Hamel P, Saint-Georges Y, de Pinto B, Lachacinski N, Altamura N, Dujardin G .Redundancy in the function of mitochondrial phosphate transport in Saccharomyces cerevisiae and Arabidopsis thaliana. Mol Microbiol, 2004,51:307-317. |
[43] |
Ortiz D F, Kreppel L, Speiser D M, Scheel G, McDonald G, Ow D W . Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter.EMBO J, 1992, 11:3491-3499.
doi: 10.1002/j.1460-2075.1992.tb05431.x pmid: 1396551 |
[44] |
孙瑞莲, 周启星 . 高等植物重金属耐性与超积累特性及其分子机理研究. 植物生态学报, 2005,29:497-504.
doi: 10.17521/cjpe.2005.0066 |
Sun R L, Zhou Q X . Heavy metal tolerance and hyperaccumulation of higher plants and their molecular mechanisms: a review. J Plant Ecol, 2005,29:497-504 (in Chinese with English abstract).
doi: 10.17521/cjpe.2005.0066 |
|
[45] | Mohamed S, Kheireddine O, Wyllia H M, Roquia R, Aicha D, Mourad B . Proportioning of biomarkers (GSH, GST, ache, catalase) Indicator of pollution at Gambusia affinis(Teleostei Fish) exposed to cadmium. Environ Res J, 2012,2:177-181. |
[46] | Guo J, Dai X, Xu W, Ma M . Over-expressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere, 2008,72:1020-1026. |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[3] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[4] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[5] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[6] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[7] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[8] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[9] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[10] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[11] | 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137. |
[12] | 曾维英, 赖振光, 孙祖东, 杨守臻, 陈怀珠, 唐向民. 基于BSA-Seq和RNA-Seq方法鉴定大豆抗豆卷叶螟候选基因[J]. 作物学报, 2021, 47(8): 1460-1471. |
[13] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[14] | 马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析[J]. 作物学报, 2021, 47(7): 1228-1238. |
[15] | 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214. |
|