欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (2): 161-174.doi: 10.3724/SP.J.1006.2019.83053

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

利用WGCNA进行玉米花期基因共表达模块鉴定

杨宇昕1,桑志勤1,2,许诚1,代文双1,邹枨1,*()   

  1. 1中国农业科学院作物科学研究所, 北京 100081
    2新疆农垦科学院, 新疆石河子 832000
  • 收稿日期:2018-07-17 接受日期:2018-10-08 出版日期:2019-02-12 网络出版日期:2018-11-08
  • 通讯作者: 邹枨
  • 基金资助:
    本研究由国家重点研发计划项目(2016YFD0100303);国家自然科学基金项目资助(31371638)

Identification of maize flowering gene co-expression modules by WGCNA

Yu-Xin YANG1,Zhi-Qin SANG1,2,Cheng XU1,Wen-Shuang DAI1,Cheng ZOU1,*()   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2 Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, Xinjiang, China
  • Received:2018-07-17 Accepted:2018-10-08 Published:2019-02-12 Published online:2018-11-08
  • Contact: Cheng ZOU
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2016YFD0100303);the National Natural Science Foundation of China(31371638)

摘要:

权重基因共表达网络分析(weighted gene co-expression network analysis, WGCNA)是系统生物学的一种研究方法, 在挖掘生物学数据与特定性状之间的生物学关系方面具有十分重要的作用。本研究利用玉米(Zea mays L.)自交系B73的14份不同发育阶段的转录组数据, 筛选掉低表达丰度的基因, 最终得到了22,426个高表达的基因用于创建基因表达矩阵; 利用不同组织作为性状, 创建表型矩阵。然后利用R软件中的WGCNA包建立了共表达网络, 共得到20个模块。本研究将与组织相关性高于0.65的模块定义为组织特异性模块, 最终鉴定到14个组织特异性模块。利用在线网站Agrigo对组织特异性模块中的基因进行GO (gene ontology)富集分析, 发现14个模块中均可以得到富集种类。开花作为玉米生育周期中的一个重要生理过程, 不仅代表着植物从营养生长到生殖生长的转变, 也关系到产量、株高和抗逆性等农艺性状。本研究发现8个组织特异性模块中的基因可以富集到与开花调控的代谢通 。此外, 有17个已经报道过的开花时间调控基因存在于共表达模块中, 并且主要分布在Blue模块和Darkmagenta模块, 因此本研究重点关注了这2个模块内部的基因调控网络。本研究通过计算不同组织中的基因表达丰度, 并联合权重基因共表达网络分析的方法, 鉴定到了具有生物学意义的共表达基因模块, 挖掘到了数个开花相关的模块, 有助于揭示玉米开花调控的遗传机制。

关键词: 玉米, 权重基因共表达网络, 发育调控, 开花, 转录组

Abstract:

Weighted gene co-expression network analysis (WGCNA) is one of the research methods in systematic biology. It can effectively analyze the complex samples, and has been extensively used in the analysis of complicated traits for many samples. Weighted gene co-expression network has the characteristics of scale-free distribution and could construct the scale free network. The genes with similar expression level can be clustered and assigned to a module, then the relationships between co-expression modules and specific tissues can be furtherly analyzed. Our research utilized the transcriptome data of 14 different tissues of maize (Zea mays L.) inbred line B73, and calculated the gene expression level of the whole genome. Through filtering out the genes with low expression level we finally got 22,426 genes with high expression level to construct the gene expression matrix. We utilized the different tissues as the trait to construct the trait matrix. The weighted gene co-expression network analysis packages of R software was used to perform the co-expression network analysis, and 20 co-expression modules were identified. We finally obtained 14 tissue specific modules which were highly correlated with traits (r > 0.65). The enrichment analysis tool Agrigo was taken to perform the GO enrichment of the tissue specific module genes, all the 14 tissues could be enriched in GO terms. Flowering is one of the important agronomic traits in the life cycle of maize controlled by external environment signals and genetic factors. Maize flowering not only represents the transition from the vegetative growth to reproductive growth, also relates to grain yield, plant height and resistance. In our research, we detected eight tissue specific modules, which could be obtained within flowering time related pathways. In addition, 17 flowering genes which have been reported in the literatures were assigned to the co-expression modules, and mainly assigned to the Blue and Darkmagenta modules. Therefore, we focused on the network of Blue and Darkmagenta modules. Our research calculated the gene expression abundances, and detected several flowering time related modules, which will contribute to revealing the genetic mechanism of maize flowering time regulation.

Key words: maize, weighted gene co-expression network, development regulation, flowering, transcriptome

图1

软阈值确定 图中的横轴均代表软阈值(β)。A: 纵坐标对应的是无尺度网络模型指数; B: 每一个软阈值对应的网络平均连接程度。"

图2

基因聚类树和模块切割 A: 基于拓扑重叠构建的基因聚类树。B: 动态混合切割法得到的基因模块, 颜色代表模块。C: 合并相似表达模式的基因模块。"

图3

样本层次聚类树及对应的组织信息 A: 基于欧氏距离得到的基因聚类树。横轴表示不同的玉米组织, 纵轴代表基因间的聚类高度。B: 性状与基因聚类树关联热图。白色的代表低关联度, 红色的代表高关联度。"

图4

共表达模块中基因数目分布 横轴代表模块, 纵轴代表模块中的基因数目。"

图5

模块与性状关联热图 横轴表示不同的性状, 纵轴表示每一个模块的特征向量。红色的格子代表性状与模块具有正相关性, 绿色的格子代表性状与模块具有负相关性。"

图6

开花富集通 每一行代表开花富集通 , 每一列代表组织特异性模块。点的大小代表多重校验的P值大小, 点的颜色表示输入基因与背景基因的比值。"

图7

Blue模块内的基因共表达网络"

图8

Darkmagenta模块内基因共表达网络"

图9

Blue模块开花相关的基因网络。。。 红色节点是参与开花调控通 的基因。"

图10

Darkmagenta模块的开花相关的基因网络 红色节点基因参与开花调控通 。"

表1

Darkmagenta模块和Blue模块中候选开花基因的功能注释。"

模块
Module
开花基因
Flowering gene
候选开花基因
Candidate flowering gene
候选基因在拟南
芥同源基因
Homologous gene
in A. thaliana
基因功能
Gene function
Blue ZCN8 GRMZM2G450273 FPF1 编码调节开花的小蛋白质并参与赤霉素信号传导途径, 在开花的光周期诱导后, 在顶端分生组织中表达
Encodes a small protein that regulates flowering and is involved in gibberellin signalling pathway. It is expressed in apical meristems immediately after the photoperiodic induction of flowering
ZCN7 GRMZM2G455413 PSBA 编码叶绿素结合蛋白D1, 属于光系统II反应中心
Encodes chlorophyll binding protein D1, belonging to photosystem II reaction center core
COL1 GRMZM2G128212 ZFP8 编码锌指蛋白
Encodes a zinc finger protein
PhyB1 GRMZM5G800407 PMAT2 编码消除酚类毒素的丙二酰转移酶
Encodes a malonyltransferase that may play a role in
phenolic xenobiotic detoxification
D8 GRMZM2G338809 AMT2 编码高亲和性的铵转运蛋白
Encodes a high-affinity ammonium transporter
D9 GRMZM2G429322 LHT1 编码一个在细胞间转运氨基酸的高亲和力蛋白
Encoding a high affinity protein that translocation amino acids between cells
ZmCCA1 GRMZM6G435553 PMI1 响应蓝光和渗透压胁迫
Response to blue light and osmotic stress
Darkmagenta GIGZ1B GRMZM2G333183 ABCB1 ATP结合蛋白, 调节生长素转运
ATP-binding protein, regulates the transport of auxin
PhyC2 GRMZM2G038846 AT1G19320 与发病机制相关的超家族蛋白
Pathogenesis-related thaumatin superfamily protein
GIGZ1A GRMZM2G104269 OASC 参与花粉管生长和受精
Involved in pollen tube growth and fertilization
ZmFKF1b GRMZM2G041065 ATAVP3 无机H焦磷酸酶家族蛋白, 在分生组织和花器官原基表达
Inorganic H pyrophosphatase family protein. Expressed in meristems and floral organ primordium
ZmFKF1a GRMZM2G027673 FAB2 植物硬脂酰酰基载体蛋白去饱和酶家族蛋白
Plant stearoyl-acyl-carrier-protein desaturase family protein
ZmPRR59 GRMZM2G107945 FKF1 编码黄素结合的F-box蛋白, 调节花期转变
Encodes flavin-binding F-box protein, regulates transition to flowering
ZmPRR59 GRMZM2G106363 LKP2 编码F-box蛋白, 响应红光和蓝光, 参与光周期途径
Encodes a member of F-box proteins, response to red and blue light, involved in photoperiod pathway

附表1

组织特异性模块的GO富集分析结果(部分)"

模块
Module
GO条目
GO term
本体
Ontology
描述
Description
P
P-value
Darkorange2 GO: 0009889 BP 生物合成过程调节Regulation of biosynthetic process 6.90E-07
Darkorange2 GO: 0006355 BP DNA依赖的转录调节Regulation of transcription, DNA-dependent 4.40E-07
Darkorange2 GO: 0015267 MF 通道活性Channel activity 0.00068
Darkorange2 GO: 0022838 MF 底物特异性通道活性Substrate-specific channel activity 0.00068
Blue GO: 0009628 BP 非生物刺激的反应Response to abiotic stimulus 3.60E-10
Blue GO: 0009416 BP 光刺激响应Response to light stimulus 1.60E-08
Blue GO: 0003700 MF 转录因子活性Transcription factor activity 0.00017
Blue GO: 0009535 CC 叶绿体类囊体膜Chloroplast thylakoid membrane 0.00022
Darkred GO: 0051186 BP 辅因子代谢过程Cofactor metabolic process 1.20E-19
Darkred GO: 0004252 MF 丝氨酸型肽链内切酶活性Serine-type endopeptidase activity 0.00015
Darkred GO: 0009543 CC 叶绿体类囊体腔 Chloroplast thylakoid lumen 4.40E-13
Darkslateblue GO: 0016051 BP 碳水化合物生物合成过程Carbohydrate biosynthetic process 5.60E-05
Darkslateblue GO: 0016830 MF 碳-碳裂解酶活性Carbon-carbon lyase activity 3.40E-06
Darkslateblue GO: 0042651 CC 类囊体膜Thylakoid membrane 0.00013
Turquoise GO: 0060560 BP 形态发生发育Developmental growth involved in morphogenesis 1.70E-11
Turquoise GO: 0015299 MF 溶质: 氢反向转运蛋白活性Solute: hydrogen antiporter activity 4.60E-05
Turquoise GO: 0031224 CC 内膜Intrinsic to membrane 8.50E-06
Darkmagenta GO: 0010927 BP 涉及形态发生的内膜组装
Cellular component assembly involved in morphogenesis
4.10E-09
Darkmagenta GO: 0004553 MF 水解酶活性, 水解O-糖基化合物
Hydrolase activity, hydrolyzing O-glycosyl compounds
7.60E-06
Darkmagenta GO: 0030312 CC 高尔基体Golgi apparatus 0.0004
Bisque4 GO: 0042180 BP 细胞酮代谢过程Cellular ketone metabolic process 3.00E-08
Bisque4 GO: 0044281 BP 小分子代谢过程Small molecule metabolic process 9.90E-06
Bisque4 GO: 0042221 BP 相应化学刺激Response to chemical stimulus 0.00032
Darkgrey GO: 0010033 BP 对有机物质的反应Response to organic substance 1.60E-07
Darkgrey GO: 0004553 MF 水解酶活性, 水解O-糖基化合物
Hydrolase activity, hydrolyzing O-glycosyl compounds
4.40E-10
Darkgrey GO: 0005740 CC 线粒体包膜Mitochondrial envelope 7.40E-05
Floralwhite GO: 0006412 BP 蛋白质翻译Translation 9.10E-07
Floralwhite GO: 0005198 MF 结构分子活性Structural molecule activity 5.80E-08
Floralwhite GO: 0043227 CC 膜有界细胞器Membrane-bounded organelle 0.0085
Darkolivegreen GO: 0010022 BP 分生组织决定Meristem determinacy 6.10E-07
模块
Module
GO条目
GO term
本体
Ontology
描述
Description
P
P-value
Darkolivegreen GO: 0003700 MF 转录因子活性Transcription factor activity 5.50E-05
Orange GO: 0042542 BP 过氧化氢反应Response to hydrogen peroxide 2.90E-05
Orange GO: 0009526 CC 质体Plastid 9.60E-09
Yellow GO: 0009605 BP 响应外界刺激Response to external stimulus 8.40E-10
Yellow GO: 0022892 MF 底物特异性转运体活性Substrate-specific transporter activity 0.00013
Plum2 GO: 0048437 BP 花器官发育Floral organ development 9.20E-05
Plum2 GO: 0005576 CC 胞外区Extracellular region 9.70E-05
Greenyellow GO: 0034220 BP 离子跨膜转运Ion transmembrane transport 5.00E-13
Greenyellow GO: 0032561 MF 鸟苷酸核糖核酸结合Guanyl ribonucleotide binding 2.40E-10
Greenyellow GO: 0043231 CC 内细胞器膜Organelle inner membrane 1.20E-17
[1] Stuart J M, Segal E, Koller D, Kim S K . A gene-coexpression network for global discovery of conserved genetic modules. Science, 2003,302:249-255.
doi: 10.1126/science.1087447
[2] Jeong H, Mason S P, Barabási A L, Oltvai Z N . Lethality and centrality in protein networks. Nature, 2001,411:41.
doi: 10.1038/35075138 pmid: 11333967
[3] Gille C, Hoffmann S, Holzhütter H G . METANNOGEN: compiling features of biochemical reactions needed for the reconstruction of metabolic networks. BMC Syst Biol, 2007,1:5.
doi: 10.1186/1752-0509-1-5 pmid: 17408512
[4] Barabási A L, Oltvai Z N . Network biology: understanding the cell's functional organization. Nat Rev Genet, 2004,5:101-113.
doi: 10.1038/nrg1272
[5] Liu S, Wang Z, Chen D, Zhang B, Tian R R, Wu J, Zhang Y, Xu K Y, Yang L M, Cheng C, Ma J, Lv L B, Zheng Y T, Hu X T, Yi Z, Wang X T, Li J L . Annotation and cluster analysis of spatiotemporal- and sex-related lncRNA expression in rhesus macaque brain. Genome Res, 2017,27:1608-1620.
doi: 10.1101/gr.217463.116 pmid: 28687705
[6] Greenham K, Guadagno C R, Gehan M A, Mockler T C, Weinig C, Ewers B E, McClung C R . Temporal network analysis identifies early physiological and transcriptomic indicators of mild drought in Brassica rapa. eLife, 2017,6:e29655.
doi: 10.7554/eLife.29655 pmid: 5628015
[7] Hollender C A, Kang C, Darwish O, Geretz A, Matthews B F, Slovin J, Alkharouf N, Liu Z . Floral transcriptomes in woodland strawberry uncover developing receptacle and anther gene networks. Plant Physiol, 2014,165:1062-1075.
doi: 10.1104/pp.114.237529 pmid: 24828307
[8] Vlăduţu C, McLaughlin J, Phillips R L . Fine mapping and characterization of linked quantitative trait loci involved in the transition of the maize apical meristem from vegetative to generative structures. Genetics, 1999,153:993-1007.
doi: 10.1017/S0016672399004012 pmid: 10511573
[9] Wong A Y, Colasanti J . Maize floral regulator protein INDETERMINATE1 is localized to developing leaves and is not altered by light or the sink/source transition. J Exp Bot, 2007,58:403-414.
[10] Muszynski M G, Dam T, Li B, Shirbroun D M, Hou Z, Bruggemann E, Archibald R, Ananiev E V, Danilevskaya O N . Delayed flowering1 encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize. Plant Physiol, 2006,142:1523-1536.
doi: 10.1104/pp.106.088815 pmid: 17071646
[11] Meng X, Muszynski M G, Danilevskaya O N . The FT-like ZCN8 gene functions as a floral activator and is involved in photoperiod sensitivity in maize. Plant Cell, 2011,23:942-960.
[12] Danilevskaya O N . delayed flowering1 encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize. Plant Physiol, 2006,142:1523-1536.
doi: 10.1104/pp.106.088815 pmid: 17071646
[13] Coles N D, McMullen M D, Balint-Kurti P J, Pratt R C, Holland J B . Genetic control of photoperiod sensitivity in maize revealed by joint multiple population analysis. Genetics, 2010,184:799-812.
doi: 10.1534/genetics.109.110304
[14] Sekhon R S, Lin H, Childs K L, Hansey C N, Buell C R, de Leon N, Kaeppler S M . Genome-wide atlas of transcription during maize development. Plant J, 2011,66:553-563.
doi: 10.1111/j.1365-313X.2011.04527.x pmid: 21299659
[15] Kroll K W, Mokaram N E, Pelletier A R, Frankhouser D E, Westphal M S, Stump P A, Stump C L, Bundschuh R, Blachly J S, Yan P . Quality Control for RNA-Seq (QuaCRS): an integrated quality control pipeline. Cancer Inform, 2014,13:7-14.
doi: 10.4137/CIN.S14022 pmid: 4214596
[16] Pertea M, Kim D, Pertea G M, Leek J T, Salzberg S L . Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc, 2016,11:1650-1667.
doi: 10.1038/nprot.2016.095 pmid: 27560171
[17] 魏凯, 张婷婷, 马磊 . 猪基因共表达网络模块的构建及功能分析. 畜牧兽医学报, 2017,48:2205-2215.
Wei K, Zhang T T, Ma L . Construction and functional analysis of gene co-expression network modules. Acta Veter Zootech Sin, 2017,48:2205-2215 (in Chinese with English abstract).
[18] 林行众, 张忠华, 杨清, 黄三文 . 黄瓜共表达基因模块的识别及其特点分析. 农业生物技术学报, 2017,23:1121-1130.
doi: 10.3969/j.issn.1674-7968.2015.09.001
Lin X Z, Zhang Z H, Yang Q, Huang S W . Identification and characterization analysis of co-expression gene modules in cucumber (Cucumis sativus L.). J Agric Biotechnol, 2017,23:1121-1130 (in Chinese with English abstract).
doi: 10.3969/j.issn.1674-7968.2015.09.001
[19] Zhang B, Kirov S, Snoddy J . WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucl Acids Res, 2005,33:W741-W748.
doi: 10.1093/nar/gki475 pmid: 15980575
[20] Langfelder P, Horvath S . WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 2008,9:559.
doi: 10.1186/1471-2105-9-559 pmid: 19114008
[21] Downs G S, Bi Y M, Colasanti J, Wu W, Chen X, Zhu T, Rothstein S J, Lukens L N . A developmental transcriptional network for maize defines coexpression modules. Plant Physiol, 2013,161:1830-1843.
doi: 10.1104/pp.112.213231 pmid: 23388120
[22] Du Z, Zhou X, Ling Y, Zhang Z H, Su Z . agriGO: a GO analysis toolkit for the agricultural community. Nucl Acids Res, 2010,38:64-70
doi: 10.1093/nar/gkq310 pmid: 20435677
[23] Dong Z S, Danilevskaya O, Abadie T, Messina C, Coles N, Cooper M . A gene regulatory network model for floral transition of the shoot apex in maize and its dynamic modeling. PLoS One, 2012,7:e43450.
doi: 10.1371/journal.pone.0043450 pmid: 3422250
[24] Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowski B, Ideker T . Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003,13:2498-2504.
doi: 10.1101/gr.1239303
[25] Mascheretti I, Turner K, Brivio R S, Hand A, Colasanti J, Rossi V . Florigen-Encoding genes of day-neutral and photoperiod-sensitive maize are regulated by different chromatin modifications at the floral transition. Plant Physiol, 2015,168:1351-1363.
doi: 10.1104/pp.15.00535 pmid: 26084920
[26] Khan S, Rowe S C, Harmon F G . Coordination of the maize transcriptome by a conserved circadian clock. BMC Plant Biol, 2010,10:126.
doi: 10.1186/1471-2229-10-126 pmid: 3095283
[27] Sheehan M J, Kennedy L M, Costich D E, Brutnell T P . Subfunctionalization of PhyB1 and PhyB2 in the control of seedling and mature plant traits in maize. Plant J, 2007,49:338-353.
doi: 10.1111/j.1365-313X.2006.02962.x pmid: 17181778
[28] Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler E S . Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001,28:286.
doi: 10.1038/90135 pmid: 11431702
[29] Larsson S J, Lipka A E, Buckler E S . Lessons from Dwarf8 on the strengths and weaknesses of structured association mapping. PLoS Genet, 2013,9:e1003246.
doi: 10.1371/journal.pgen.1003246 pmid: 23437002
[30] Lawit S J, Wych H M, Xu D, Kundu S, Tomes D T . Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development. Plant Cell Physiol, 2010,51:1854-1868.
doi: 10.1093/pcp/pcq153 pmid: 20937610
[31] Wang X, Wu L, Zhang S, Wu L, Ku L, Wei X, Xie L, Chen Y . Robust expression and association of ZmCCA1 with circadian rhythms in maize. Plant Cell Rep, 2011,30:1261-1272.
[32] Miller T A, Muslin E H, Dorweiler J E . A maize CONSTANS-like gene, conz1, exhibits distinct diurnal expression patterns in varied photoperiods. Planta, 2008,227:1377-1388.
doi: 10.1007/s00425-008-0709-1 pmid: 18301915
[33] Sheehan M J, Farmer P R, Brutnell T P . Structure and expression of maize phytochrome family homeologs. Genetics, 2004,167:1395-1405
doi: 10.1534/genetics.103.026096 pmid: 15280251
[34] Hayes K R, Beatty M, Meng X, Simmons C R, Habben J E, Danilevskaya O N . Maize global transcriptomics reveals pervasive leaf diurnal rhythms but rhythms in developing ears are largely limited to the core oscillator. PLoS One, 2010,5:e12887.
doi: 10.1371/journal.pone.0012887 pmid: 20886102
[35] Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A . Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics, 2004,168:2169-2185.
doi: 10.1534/genetics.104.032375 pmid: 15611184
[36] Zhao W, Langfelder P, Fuller T, Dong J, Li A, Hovarth S . Weighted gene coexpression network analysis: state of the art. J Biopharm Stat, 2010,20:281-300.
doi: 10.1080/10543400903572753 pmid: 20309759
[37] Holland J B . Genetic architecture of complex traits in plants. Curr Opin Plant Biol, 2007,10:156-161.
doi: 10.1016/j.pbi.2007.01.003 pmid: 17291822
[38] Camus-Kulandaivelu L, Veyrieras J B, Madur D, Combes V, Fourmann M, Barraud S, Dubreuil P, Gouesnard B, Manicacci D, Charcosset A . Maize adaptation to temperate climate: relationship between population structure and polymorphism in the Dwarf8 gene. Genetics, 2006,172:2449-2463.
doi: 10.1534/genetics.105.048603 pmid: 16415370
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 徐昕, 秦超, 赵涛, 刘斌, 李宏宇, 刘军. GmELF3s调控大豆开花时间和生物钟节律的功能分析[J]. 作物学报, 2022, 48(4): 812-824.
[9] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[10] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[11] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[12] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[13] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[14] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[15] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!