欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (5): 662-675.doi: 10.3724/SP.J.1006.2019.82049

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻温敏型叶片白化转绿突变体tsa2的表型鉴定与基因定位

尚丽娜,陈新龙,米胜南,委刚,王玲,张雅怡,雷霆,林永鑫,黄兰杰,朱美丹,王楠()   

  1. 西南大学水稻研究所 / 西南大学农业科学研究院, 重庆 400715
  • 收稿日期:2018-10-10 接受日期:2019-01-12 出版日期:2019-05-12 网络出版日期:2019-02-12
  • 通讯作者: 王楠
  • 基金资助:
    本研究由国家自然科学基金项目(31771750);重庆市基础研究与前沿探索项目(cstc2018jcyjAX0424);重庆市研究生科研创新项目(CYS18084)

Phenotypic identification and gene mapping of temperature-sensitive green- revertible albino mutant tsa2 in rice (Oryza sativa L.)

Li-Na SHANG,Xin-Long CHEN,Sheng-Nan MI,Gang WEI,Ling WANG,Ya-Yi ZHANG,Ting LEI,Yong-Xin LIN,Lan-Jie HUANG,Mei-Dan ZHU,Nan WANG()   

  1. Rice Research Institute, Southwest University / Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
  • Received:2018-10-10 Accepted:2019-01-12 Published:2019-05-12 Published online:2019-02-12
  • Contact: Nan WANG
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31771750);Basic Research and Frontier Exploration Project in Chongqing(cstc2018jcyjAX0424);the Graduate Research and Innovation Project in Chongqing(CYS18084)

摘要:

水稻温敏型叶色突变体是研究植物光合作用、叶绿体结构和功能以及温度影响叶绿体发育的理想材料。利用甲基磺酸乙酯(EMS)诱变籼型水稻(Oryza sativa L.)三系保持系西农1B, 从其后代中筛选到一个突变性状稳定遗传的温敏型叶片白化转绿突变体tsa2 (temperature-sensitive green-revertible albino 2)。与野生型相比, tsa2突变表型受温度影响, 22°C条件下萌发的野生型幼苗表型正常, 而tsa2幼苗完全白化, 且约40%白化苗死亡, 存活白化苗的光合色素含量、光合速率均显著降低, 成熟期主要农艺性状均显著变劣; 在28°C下萌发的tsa2幼苗叶片呈浅绿色并伴有白条纹, 其光合色素含量显著降低, 光合速率及主要农艺性状差异较小; 32°C下萌发的tsa2幼苗叶片无明显差异。透射电镜观察显示, 与野生型相比, tsa2在22°C下叶肉细胞中无叶绿体或存在异常发育叶绿体(尚未分化出基粒和基层), 在28°C下部分叶肉细胞含少量发育完整的叶绿体, 在32°C下叶肉细胞数量及形态均正常。实时荧光定量PCR (qRT-PCR)分析表明, 与野生型相比, tsa2突变体中部分光合色素代谢途径基因、叶绿体发育相关基因及光合作用相关基因的表达水平呈不同程度变化。遗传分析表明, tsa2突变表型受一对隐性核基因控制, TSA2被定位于第5染色体SSR标记S5-57和S5-119之间, 物理距离为718 kb。本研究为水稻遗传改良及研究温度影响叶绿体发育机制奠定了基础。

关键词: 水稻(Oryza sativa L.), 温敏, 白化转绿, 叶绿体超微结构, 基因定位

Abstract:

Temperature-sensitive leaf color mutants of rice are ideal materials in studies on photosynthesis, chloroplast structure and function, and chloroplast development. A temperature-sensitive green-revertible albino mutant (tsa2) with genetically stable mutational traits was screened out from the progeny of ethyl methane sulfonate (EMS) treated indica three-line maintainer line Xinong 1B. The wild type seedlings had normal phenotype at 22°C, while the mutant tsa2 had completely albino leaves and about 40% of albino seedlings died at the seedling stage; the photosynthetic pigment contents and photosynthetic rate of surviving albino seedlings decreased significantly, and the main agronomic traits were significantly lower than those of the wild type at maturity stage. When germinated at 28°C, tsa2 showed light-green leaves with white streaks and significantly lower photosynthetic pigment contents than the wild type, while a small difference of photosynthetic rate and main agronomic traits between the tsa2 and the wild type. No significant difference in leaves was observed between tsa2 and the wild type when seedlings germinated at 32°C. Transmission electron microscope observation revealed that the albino leaves of tsa2 demonstrated abnormal chloroplast development (without differentiated grana and granum lamella) or without chloroplast at 22°C and completely developed chloroplasts in partial mesophyll cells at 28°C, and normal number and morphology of mesophyll cells compared with wild type at 32°C. The analysis of qRT-PCR indicated that genes related to partial photosynthetic pigment metabolism pathways, chloroplast development and photosynthesis expressed in tsa2 to a varying degrees compared with these of the wild type. Genetic analysis suggested that mutational phenotype of tsa2 was controlled by a single recessive nuclear gene, TSA2, which was finally mapped between SSR markers S5-57 and S5-119 on chromosome 5, with a physical distance of 718 kb. These results lay a foundation for the research on genetic improvement and the mechanism explanation of chloroplast development affected by temperature in rice (Oryza sativa L.).

Key words: rice (Oryza sativa L.), temperature-sensitive, green-revertible albino, chloroplast ultrastructure, gene mapping

图1

野生型(WT)和突变体tsa2的表型特征 A, B, C: 田间日均气温22°C时播种的野生型(WT)和突变体tsa2的苗期(A)、分蘖期(B)和成熟期(C)植株; D, E, F: 田间日均气温28°C时播种的野生型(WT)和突变体tsa2的苗期(D)、分蘖期(E)和成熟期(F)植株; G, H, I, J, K, L: 分别对应A, B, C, D, E, F中的叶片。图H, I, K和L中的1、2、3和4分别表示倒一叶、倒二叶、倒三叶和倒四叶。图A和D中, Bar = 2 cm; 图B和E中, Bar = 6 cm; 图C和F中, Bar = 13 cm; 图G~L中, Bar = 0.7 cm。"

图2

不同田间温度下播种的野生型(WT)和突变体tsa2的光合特性 A: 净光合速率(Pn); B: 气孔导度(Gs); C: 胞间CO2浓度(Ci); D: 蒸腾速率(Tr); **: 在0.01水平上差异显著。"

图3

不同田间温度下播种的野生型(WT)和突变体tsa2的农艺性状 A: 株高(cm); B: 穗长(cm); C: 分蘖数; D: 有效穗数; E: 每穗粒数; F: 每穗实粒数; G: 千粒重(g); H: 结实率(%); *: 在0.05水平上差异显著; **: 在0.01水平上差异显著。"

图4

不同温度下野生型(WT)和突变体tsa2幼苗表型及光合色素含量 A, B, C: 分别为22°C(A)、28°C(B)和32°C(C)下萌发的22 d野生型(WT)和突变体tsa2幼苗; D: 不同温度下萌发的野生型(WT)和突变体tsa2幼苗光合色素含量; **: 在0.01水平上差异显著。图A、B和C中, Bar = 2.5 cm。"

图5

不同温度下野生型(WT)及突变体tsa2叶肉细胞中叶绿体超微结构 A~D: 不同温度下萌发的22 d野生型(WT)(A)和突变体tsa2 (B, C, D)叶肉细胞结构; E, F, G, H: 分别为A、B、C、D中虚线区域的放大视野; I, J: 将22°C萌发的22 d突变体tsa2分别移至28°C (I)和32°C (J)下培养10 d的叶肉细胞结构; K, L: 将28°C萌发的22 d突变体tsa2分别移至22°C (K)和32°C (L)下培养10 d的叶肉细胞结构; M, N, O, P: 分别为I, J, K, L中虚线区域的放大视野。图A~D和I~L中, Bar=2 μm; 图E~H和M~P中, Bar=500 nm。"

图6

野生型(WT)及突变体tsa2叶片中光合色素代谢以及叶绿体发育和光合相关基因的表达分析 **: 在0.01水平上差异显著。"

表1

光合色素代谢以及叶绿体发育和光合相关基因的定量引物"

引物
Primer
正向序列
Forward sequence (5'-3')
反向序列
Reverse sequence (5'-3')
UBIQUITIN 5 ACCACTTCGACCGCCACTACT ACGCCTAAGCCTGCTGGTT
OsCAO1 GACACCTTCATCTGGGCTTCAA CGAGAGACATCCGGTAGAGC
OsCHLI GTTCGAGCCTGGTTTGCTTGC CTCTCCACGGTGTTCCATCCTG
OsCHLa/b GGTGGTCAAGGTGTCATTGTCAT ACGCGACTGGATCTTTGGAGAG
OsCHLM CCATCCATTGGTCTCCTTATGACA GTAGCCTACTTACCATCAATGAGTC
OsCHLD GCTTGCAGAAAGCTACACAAGC AGGCCGTGAGCTAAAGGAGA
OsDVR CAGGTCGAGACCGTCAAGAAC ATGACCTGGATCGGCACCTTG
OsHEMD TGGAAGGCTGCTGGAAATCCTAAG TCCTTGGAAGCTCTGAGGCCAA
OsPSY1 GCCTCAAGCAGGCCTATCATC GTGATGTGCGAGGCATTTGGTC
OsPSY2 GACAAATTCTGCGTGCCAGGTT GACAGCAGCTTCTTTGCCTTGTT
OsPSY3 TTCAGACAGGCCGAAGAAGGC GTAGGCCCTCTTGGTGAAGTTGT
OsPSAA TGGGGTTGATCCTAAGGAGATACCA CCTCCGCGAAAACTAAGAAATTCTG
OsPSAB TGGCAGGGCAACGTTTCACAATT CAGTCGCCCAAACAAGATGTCCAAAT
OsPSAC GTGTACGAGCTTGTCCAACAGATGTAT GCAGGCGGATTCGCATCTCTTAC
OsPSAD AGCAGGTGTTCGAGATGCCCAC ATTGGGGAAGACGCGGTAGAACT
OsPSAE AGGCACCAAGGTGAAGATCCTGAG AGGGCGTAGTTGTTGGTCGACAC
OsPSAF TCAAGAAGCTCCAGTCGTCGCTC AGGCCGAACTTGCCGTAGTTCTC
OsPSAH GTCGCCGTACAACCCTCTCCAG CTTCTTGATCGGAAGCAGGTCCG
OsPSAL TCTGAGAAGCCAACGTACCAGGTG AGGTTGGAGAGGTACCAGGCGAC
OsPSBA GCGGTTCCCTATTCAGTGCTATG TAACCATGAGCGGCCACAATATT
OsPSBB TAGTTTCTGGTTGGGCTGGCTC CTCCAACCACCCCACGAATTG
OsPSBD GTAGGATGGTCTGGCCTATTGCTT ACTATTGGCAGGGGTGGAAACTG
OsPSBE TGTCTGGAAGCACGGGAGAACGT GTTTGGCCGAGGACTTCCAAACAC
OsPSBF CTATTTTTACAGTGCGATGGCTGG TATCGTTGGATGAACTGCATTGCT
OsPSBO TCGAGGAGAAGGACGGAATCGAC CTTTGGGTCGAGGAAGGACGAAC
OsPSBY TGCGGTCAGACTGAGAGCTTGAG AAGGGAAGAGAGGATTAGGAACAGGATT
OsPETA GCAGCAAGGTTATGAAAACCCAC AACAGCACCCACATTCAACCCT
OsPETB TTCAGACCTCGCAACCAGACTG AACAAAAGGCAAGGGTTCTTCGA
OsPETC CTCAAGGGTGACCCGACGTACCT AGGGGCAGATGAACTTGTTCTCG
OsPETD GCGTGGCCCAACGATCTTTTAT TCCAGAGGAGTTGCAAACGGAT
OsPETH GTTCTGGGATCCAGGGTAGCAAC ACTGACATGCAGAGCACCTTGTTC
OsATPA TGAATCTCCTGCTCCGGGTATAAT TGCTGTTTTGCCGGTTTGTCT
OsATPB TCGCAATTCTTGGGTTGGATGA CAACATACTTTCCCGGAGAACCG
OsATPG AGGTGGAGCTCCTCTACTCCAAGT TCAGCTTCCCTTCCTTGGTGGT
OsNDHA CGAGCTGCCGCTCAATCTATTAG AGGCTGACGCCAAAGATTCCATC
OsNDHB TAACAGCTACTCTAGGGGGAATGTT CTTGCCCCACCCATGAGTAAAT
OsRBCS2 ACTCCAAGAGCTCGCAGACC GCCTGTAGTTGGCACCCAGA
OsLHCA2 CCTGGTGGTCTGTGGTTTGACC CCTGGAACCAAGCTCCCATGACG
OsLHCA3 GCTCAGGCTCTTCTCTCTGGGAG CTCAGGGACTGCTTGGATGCGA
OsLHCA4 CCCTTCTCCCACCTACCTCAACG TCAACCCGATCTTCGTCAGCACC
OsLHCA5 TCACCTCGACGGCACATTACCT CTGCTTCAAACCACACTGGCAG
OsLHCB1.3 AAGTGAAGTGGGGGACCGTAGC TCTCGTCGCACTAAACCCATCTTC
OsLHCB2.1 CACGATCGAGATGGTGCCAAC CGGCCTGCGGCTTACATTAA
OsLHCB3 GACTTCAAGGAGCCCGTGTGG CCATGAGGACGACCTGGAATCC
OsLHCB4.1 TCTTTCGCGCGCAATTCAAAC TGCAAGTCGCCATTAACCACC
OsLHCB5 GATGAGCTCGCCAAGTGGTACG CTGAGGCCAAAAGGGTCGTAGC

表2

第5染色体上的部分多态性分子标记"

标记
Marker
正向序列
Forward sequence (5'-3')
反向序列
Reverse sequence (5'-3')
RM405 TATGCTTTCTGTCAGCTTCC CTGCTGTGAAAGAGTTGACG
ZTQ43 TGCAGAGACAAGGAAGCGG TCCTGATCGTTGAGCAGGC
S5-20 TCAGGTCTTACGACGGTATGG GGACACACTAGAATCTACGCACG
S5-57 GAAGCTATTAGCCGGGATCG GCCAAGGCAAAGCTCTCTT
S5-119 AGCGCAGATATGCTTTCCAA TATGGCAGTGCAGAGGTGA
RM18053 GAGACCAGAGGGAGACAAAGA CTTAGGTCTCCCGACAGTCACG

图7

TSA2基因在第5染色体上的分子定位 n = 285: 初步定位群体数目; n = 1150: 精细定位群体数目。"

表3

TSA2基因定位区间内蛋白质亚细胞定位预测"

基因登录号
Accession number
蛋白质亚细胞定位预测
Protein subcellular localization prediction
(https://www.genscript.com/)
基因登录号
Accession number
蛋白质亚细胞定位预测
Protein subcellular localization prediction
(https://www.genscript.com/)
LOC_Os05g09200 chlo: 7, nucl: 3, mito: 3 LOC_Os05g09640 chlo: 10, nucl: 1, cyto: 1, mito: 1
LOC_Os05g09240 chlo: 7, mito: 6 LOC_Os05g09704 chlo: 9.5, chlo_mito: 5.5, vacu: 2, plas: 1
LOC_Os05g09280 E.R.: 4.5, cyto: 4, E.R._plas: 4, plas: 2.5, mito: 2 LOC_Os05g09708 chlo: 8, cyto: 2, nucl: 1, mito: 1, extr: 1
LOC_Os05g09290 chlo: 14 LOC_Os05g09724 chlo: 8, vacu: 2, nucl: 1, plas: 1, extr: 1
LOC_Os05g09370 chlo: 12, nucl: 1 LOC_Os05g09740 chlo: 11, vacu: 2
基因登录号
Accession number
蛋白质亚细胞定位预测
Protein subcellular localization prediction
(https://www.genscript.com/)
基因登录号
Accession number
蛋白质亚细胞定位预测
Protein subcellular localization prediction
(https://www.genscript.com/)
LOC_Os05g09400 chlo: 12, mito: 2 LOC_Os05g10210 chlo: 4, cyto: 2.5, vacu: 2, cyto_nucl: 2, mito: 1
LOC_Os05g09430 chlo: 9, mito: 3, extr: 1 LOC_Os05g10290 chlo: 9, cyto: 2, mito: 1, extr: 1
LOC_Os05g09450 chlo: 7, extr: 3, nucl: 2, cyto: 1 LOC_Os05g10300 chlo: 3, nucl: 3, E.R.: 3, vacu: 2, mito: 1, plas: 1
LOC_Os05g09480 chlo: 10, mito: 2, nucl: 1 LOC_Os05g10330 chlo: 6, cyto: 2, vacu: 2, E.R.: 2, nucl: 1
LOC_Os05g09490 chlo: 9, cyto: 5 LOC_Os05g10350 chlo: 8, cyto: 3, nucl: 1.5, nucl_plas: 1.5
LOC_Os05g09510 chlo: 12, nucl: 1 LOC_Os05g10380 chlo: 12, mito: 2
LOC_Os05g09540 chlo: 9, mito: 4 LOC_Os05g10420 cyto: 7, chlo: 6
LOC_Os05g09550 chlo: 11, nucl: 1, plas: 1 LOC_Os05g10430 chlo: 6, nucl: 5, extr: 1, E.R.: 1
LOC_Os05g09590 chlo: 5, mito: 5, nucl: 4 LOC_Os05g10550 chlo: 6, nucl: 5, cyto: 3

表4

TSA2基因定位区间内部分注释基因"

基因登录号
Accession number
基因注释
Gene annotation
LOC_Os05g09060 collagen alpha-2, putative, expressed
LOC_Os05g09360 glycine-rich protein, putative, expressed
LOC_Os05g09410 histidine-containing phosphotransfer protein 4, putative, expressed
LOC_Os05g09440 malic enzyme
LOC_Os05g09500 cytosolic hexokinase
LOC_Os05g09520 calmodulin binding protein
LOC_Os05g09600 GA11916-PA, putative, expressed
LOC_Os05g09620 SCC3, putative, expressed
LOC_Os05g09630 homeobox domain containing protein, expressed
LOC_Os05g09650 ubiquinone biosynthesis protein CoQ4, putative, expressed
LOC_Os05g09660 HAD superfamily phosphatase, putative, expressed
LOC_Os05g09680 acid phosphatase family, putative, expressed
LOC_Os05g09732 acid phosphatase family, putative, expressed
LOC_Os05g10310 acid phosphatase, putative, expressed
LOC_Os05g10370 acid phosphatase, putative, expressed
[1] Kurata N, Miyoshi K, Nonomura K, Yamazaki Y, Ito Y . Rice mutants and genes related to organ development, morphogenesis and physiological traits. Plant Cell Physiol, 2005,46:48-62.
doi: 10.1093/pcp/pci506
[2] 黄晓群, 赵海新, 董春林, 孙业盈, 王平荣, 邓晓建 . 水稻叶绿素合成缺陷突变体及其生物学研究进展. 西北植物学报, 2005,25:1685-1691.
Huang X Q, Zhao H X, Dong C L, Sun Y Y, Wang P R, Deng X J . Chlorophyll-deficient rice mutants and their research advances in biology. Acta Bot Boreali-Occident Sin, 2005,25:1685-1691 (in Chinese with English abstract).
[3] 兰涛, 汪斌, 凌秋平, 徐春花, 童治军, 梁康迳, 段远霖, 金晶, 吴为人 . 水稻苗期低温失绿基因cisc(t)的精细定位及其候选基因的确定. 科学通报, 2010,55:2183-2187.
Lan T, Wang B, Ling Q P, Xu C H, Tong Z J, Liang K J, Duan Y L, Jin J, Wu W R . Fine mapping of cisc(t), a gene for cold-induced seedling chlorosis, and identification of its candidate in rice. Chin Sci Bull, 2010,55:2183-2187 (in Chinese).
[4] Chen T, Zhang Y D, Zhao L, Zhu Z, Lin J, Zhang S B, Wang C L . Fine mapping and candidate gene analysis of a green-revertible albino gene gra(t) in rice. J Genet Genomics, 2009,36:117-123.
[5] 郭涛, 黄永相, 黄宣, 刘永柱, 张建国, 陈志强, 王慧 . 水稻叶色白化转绿及多分蘖矮秆基因hw-1(t)的图位克隆. 作物学报, 2012,38:1397-1406.
Guo T, Huang Y X, Huang X, Liu Y Z, Zhang J G, Chen Z Q, Wang H . Map-based cloning of a green-revertible albino and high-tillering dwarf gene hw-1(t) in rice. Acta Agron Sin, 2012,38:1397-1406 (in Chinese with English abstract).
[6] Kusumi K, Mizutani A, Nishimura M, Iba K . A virescent gene V1 determines the expression timing of plastid genes for transcription/translation apparatus during early leaf development in rice. Plant J, 1997,12:1241-1250.
[7] Sugimoto H, Kusumi K, Noguchi K, Yano M, Yoshimura A, Iba K . The rice nuclear gene, VIRESCENT 2, is essential for chloroplast development and encodes a novel type of guanylate kinase targeted to plastids and mitochondria. Plant J, 2007,52:512-527.
[8] Su N, Hu M L, Wu D X, Wu F Q, Fei G L, Lan Y, Chen X L, Shu X L, Zhang X, Guo X P, Cheng Z J, Lei C L, Qi C K, Jiang L, Wang H, Wan J M . Disruption of a rice pentatricopeptide repeat protein causes a seedling-specific albino phenotype and its utilization to enhance seed purity in hybrid rice production. Plant Physiol, 2012,159:227-238.
doi: 10.1104/pp.112.195081
[9] 简磊, 王仲康, 曾冬冬, 秦冉, 石春海, 金晓丽 . 水稻白化转绿突变体albg的鉴定和基因精细定位. 核农学报, 2017,31:2289-2297.
Jian L, Wang Z K, Zeng D D, Qin R, Shi C H, Jin X L . Identification and gene fine mapping of green-revertible albino mutant albg in rice. J Nucl Agric Sci, 2017,31:2289-2297 (in Chinese with English abstract).
[10] Zhang T, Feng P, Yu P, Yu G L, Sang X C, Ling Y H, Zeng X Q, Li Y D, Huang J Y, Zhang T Q, Zhao F M, Wang N, Zhang C W, Yang Z L, Wu R H, He G H . VIRESCENT-ALBINO LEAF 1 regulates leaf colour development and cell division in rice. J Exp Bot, 2018,69:4791-4804.
[11] Lichtenthaler H K . Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol, 1987,148:350-382.
doi: 10.1016/0076-6879(87)48036-1
[12] Murray M G, Thompson W F . Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980,8:4321-4325.
doi: 10.1093/nar/8.19.4321
[13] Michelmore R W, Paran I, Kesseli R V . Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991,88:9828-9832.
doi: 10.1073/pnas.88.21.9828
[14] 王忠伟 . 水稻黄绿叶基因YGL8YGL9的克隆与功能分析. 西南大学博士学位论文, 重庆, 2016.
Wang Z H . Cloning and functional analysis of two yellow-green leaf genes YGL8 and YGL9 in rice (Oryza sativa L.). PhD Dissertation of Southwest University, Chongqing, China, 2016 (in Chinese with English abstract).
[15] 全瑞兰, 王青林, 马汉云, 扶定, 霍二伟, 沈光辉, 郭桂英 . 水稻白化转绿突变体研究进展. 安徽农学通报, 2015,21(12):17-20.
Quan R L, Wang Q L, Ma H Y, Fu D, Huo E W, Shen G H, Guo G Y . Research advances on green-revertible albino mutants of rice. Anhui Agric Sci Bull, 2015,21(12):17-20 (in Chinese with English abstract).
[16] 王付华, 王亚, 王青林, 尹海庆, 王生轩, 陈献功, 孙建军, 王越涛, 付景, 白涛, 周柯 . 水稻白化复绿突变体白784的生理特性分析及基因精细定位. 河南农业科学, 2015,44(10):17-23.
Wang F H, Wang Y, Wang Q L, Yin H Q, Wang S X, Chen X G, Sun J J, Wang Y T, Fu J, Bai T, Zhou K . Physiological characters analysis and gene fine mapping of green-revertible albino mutation line Bai 784. J Henan Agric Sci, 2015,44(10):17-23 (in Chinese with English abstract).
[17] Xia J C, Wang Y P, Ma B T, Yin Z Q, Hao M, Kong D W, Li S G . Ultrastructure and gene mapping of the albino mutant al12 in rice( Oryza sativa L.). Acta Genet Sin, 2006,33:1112-1119.
[18] 郑加兴, 覃保祥, 邱永福, 刘芳, 张月雄, 马增凤, 刘驰, 李容柏 . 水稻低温白化转绿突变系ds93的形态生理特性及基因定位. 西南农业学报, 2013,26:843-849.
Zheng J X, Qin B X, Qiu Y F, Liu F, Zhang Y X, Ma Z F, Liu C, Li R B . Physiological character and gene mapping of virescent mutant line ds93 in rice( Oryza sativa L.). Southwest China J Agric Sci, 2013,26:843-849 (in Chinese with English abstract).
[19] Peng Y, Zhang Y, Lyu J, Zhang J H, Li P, Shi X L, Wang Y F, Zhang H L, He Z H, Teng S . Characterization and fine mapping of a novel rice albino mutant low temperature albino 1. J Genet Genomics, 2012,39:385-396.
doi: 10.1016/j.jgg.2012.05.001
[20] 王军, 杨杰, 陈志德, 范方军, 朱金燕, 杨金欢, 仲维功 . 水稻白化转绿突变体v13(t)的生理特性和基因定位. 中国农业科学, 2011,44:1973-1979.
Wang J, Yang J, Chen Z D, Fan F J, Zhu J Y, Yang J H, Zhong W G . Physiological characteristics and gene mapping of rice albino green mutant v13(t) in rice. Sci Agric Sin, 2011,44:1973-1979 (in Chinese with English abstract).
[21] 刘钰龙, 刘峰, 周坤能, 苏晓妹, 方先文, 张云辉, 鲍依群 . 水稻温敏型叶片白化突变体tsa1的表型鉴定和基因定位. 作物学报, 2016,42:1754-1763.
Liu Y L, Liu F, Zhou K N, Su X M, Fang X W, Zhang Y H, Bao Y Q . Phenotypic identification and gene mapping of rice albino mutant tsa1 in warm-sensitive leaves. Acta Agron Sin, 2016,42:1754-1763 (in Chinese with English abstract).
[22] 崔海瑞, 夏英武, 高明尉 . 温度对水稻突变体W1叶色及叶绿素生物合成的影响. 核农学报, 2001,15:269-273.
Cui H R, Xia Y W, Gao M W . Effects of temperature on leaf color and chlorophyll biosynthesis of rice mutant W1. Acta Agric Nucl Sin, 2001,15:269-273 (in Chinese).
[23] 舒庆尧, 刘贵富, 夏英武 . 温敏水稻叶色突变体的研究. 核农学报, 1996,1(10):6-10.
Shu Q Y, Liu G F, Xia Y W . Temperature-sensitive leaf color mutation in rice ( Oryza sativa L.). Acta Agric Nucl Sin, 1996,1(10):6-10 (in Chinese).
[24] 吴殿星, 舒庆尧, 夏英武, 郑涛, 刘贵付 . 一个新的水稻转绿型白化突变系W25的叶色特征及遗传. 浙江农业学报, 1996,8:372-374.
Wu D X, Shu Q Y, Xia Y W, Zheng T, Liu G F . Leaf color character and genetics of a new green able albino mutation line W25 of rice( Oryza sativa L.). Acta Agric Zhejiangensis, 1996,8:372-374 (in Chinese).
[25] 董彦君, 董文其, 张小明, 石守望, 张宏德 . 突变体Fan5苗色低温敏感性状的遗传分析. 中国水稻科学, 1995,9:249-250.
Dong Y J, Dong W Q, Zhang X M, Shi S W, Zhang H D . Genetic analysis of low-temperature-sensitive seedling-colour character in the mutant Fan5. Chin J Rice Sci, 1995,9:249-250 (in Chinese with English abstract).
[26] 张天泉, 郭爽, 邢亚迪, 杜丹, 桑贤春, 凌英华, 何光华 . 水稻新黄绿叶基因YGL9的分子定位. 作物学报, 2015,41:989-997.
Zhang T Q, Guo S, Xing Y D, Du D, Sang X C, Ling Y H, He G H . Molecular mapping of a new yellow green leaf gene YGL9 in rice( Oryza sativa L.). Acta Agron Sin, 2015,41:989-997 (in Chinese with English abstract).
[27] Wu Z, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M . A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007,145:29-40.
doi: 10.1104/pp.107.100321
[28] Yoo J H, Park J H, Cho S H, Yoo S C, Li J J, Zhang H T, Kim K S, Koh H J, Paek N C . The rice bright green leaf ( bgl) locus encodes OsRopGEF10, which activates the development of small cuticular papillae on leaf surfaces. Plant Mol Biol, 2011,77:631-641.
[29] Miyoshi K, Ito Y, Serizawa A, Kurata N . OsHAP3 genes regulate chloroplast biogenesis in rice. Plant J, 2003,36:532-540.
[30] Moore M , Goforth R l, Mori H, Henry R . Functional interaction of chloroplast SRP/FtsY with the ALB3 translocase in thylakoids: substrate not required. J Cell Biol, 2003,162:1245-1254.
doi: 10.1083/jcb.200307067
[31] Motohashi R, Nagata N, Ito T, Takahashi S, Hobo T, Yoshida S, Shinozaki K . An essential role of a TatC homologue of a DpH-dependent protein transporter in thylakoid membrane formation during chloroplast development in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2001,98:499-504.
[1] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[2] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[3] 李振华, 王显亚, 刘一灵, 赵杰宏. NtPHYB1与光温信号互作调控烟草种子萌发[J]. 作物学报, 2022, 48(1): 99-107.
[4] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[5] 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293.
[6] 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172.
[7] 黄妍, 贺焕焕, 谢之耀, 李丹莹, 赵超越, 吴鑫, 黄福灯, 程方民, 潘刚. 水稻矮化宽叶突变体osdwl1的生理特性和基因定位[J]. 作物学报, 2021, 47(1): 50-60.
[8] 姜鸿瑞, 叶亚峰, 何丹, 任艳, 杨阳, 谢建, 程维民, 陶亮之, 周利斌, 吴跃进, 刘斌美. 一个新的水稻脆秆突变体bc17的鉴定及基因定位[J]. 作物学报, 2021, 47(1): 71-79.
[9] 石慧敏, 蒋成功, 王红武, 马庆, 李坤, 刘志芳, 吴宇锦, 李树强, 胡小娇, 黄长玲. 玉米籽粒突变体dek48的表型鉴定与基因定位[J]. 作物学报, 2020, 46(9): 1359-1367.
[10] 陈日荣,周延彪,王黛君,赵新辉,唐晓丹,许世冲,唐倩莹,符星学,王凯,刘选明,杨远柱. 利用CRISPR/Cas9技术编辑水稻温敏不育基因TMS5[J]. 作物学报, 2020, 46(8): 1157-1165.
[11] 张瑞栋,肖梦颖,徐晓雪,姜冰,邢艺凡,陈小飞,李邦,艾雪莹,周宇飞,黄瑞冬. 高粱种子对萌发温度的响应分析与耐低温萌发能力鉴定[J]. 作物学报, 2020, 46(6): 889-901.
[12] 王芳权,范方军,夏士健,宗寿余,郑天清,王军,李文奇,许扬,陈智慧,蒋彦婕,陶亚军,仲维功,杨杰. 水稻光温敏核不育基因tms5pms3的互作效应[J]. 作物学报, 2020, 46(3): 317-329.
[13] 田士可, 秦心儿, 张文亮, 董雪, 代明球, 岳兵. 玉米雄性不育突变体mi-ms-3的遗传分析及分子鉴定[J]. 作物学报, 2020, 46(12): 1991-1996.
[14] 米文博, 方园, 刘自刚, 徐春梅, 刘高阳, 邹娅, 徐明霞, 郑国强, 曹小东, 方新玲. 白菜型冬油菜温敏不育系PK3-12S育性转换的差异蛋白质组学分析[J]. 作物学报, 2020, 46(10): 1507-1516.
[15] 谢园华,李凤菲,马晓慧,谭佳,夏赛赛,桑贤春,杨正林,凌英华. 水稻半外卷叶突变体sol1的表型分析与基因定位[J]. 作物学报, 2020, 46(02): 204-213.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!