欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (7): 1002-1016.doi: 10.3724/SP.J.1006.2019.84143

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蔗脂氧合酶基因ScLOX1的克隆与表达分析

孙婷婷1,王文举1,娄文月1,刘峰1,张旭1,王玲1,陈玉凤1,阙友雄1,2,许莉萍1,2,李大妹1,2,苏亚春1,2,*()   

  1. 1 福建农林大学 / 农业部福建甘蔗生物学与遗传育种重点实验室, 福建福州 350002
    2 福建农林大学 / 教育部作物遗传育种与综合利用重点实验室, 福建福州 350002
  • 收稿日期:2018-11-05 接受日期:2019-01-29 出版日期:2019-07-12 网络出版日期:2019-03-22
  • 通讯作者: 苏亚春
  • 作者简介:E-mail: sunting3221@163.com
  • 基金资助:
    本研究由国家自然科学基金项目(31501363);福建省高校杰出青年科研人才计划项目(苏亚春-2017)(SYC-2017);福建农林大学杰出青年基金(xjq201630);国家现代农业产业技术体系建设专项(CARS-17)

Cloning and expression analysis of sugarcane lipoxygenase gene ScLOX1

SUN Ting-Ting1,WANG Wen-Ju1,LOU Wen-Yue1,LIU Feng1,ZHANG Xu1,WANG Ling1,CHEN Yu-Feng1,QUE You-Xiong1,2,XU Li-Ping1,2,LI Da-Mei1,2,SU Ya-Chun1,2,*()   

  1. 1 Key Laboratory of Sugarcane Biology and Genetic Breeding (Fujian), Ministry of Agriculture / Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    2 Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education / Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China;
  • Received:2018-11-05 Accepted:2019-01-29 Published:2019-07-12 Published online:2019-03-22
  • Contact: Ya-Chun SU
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31501363);the Research Funds for Distinguished Young Scientists in Fujian Provincial Department of Education(SYC-2017);the Research Funds for Distinguished Young Scientists in Fujian Agriculture and Forestry University(xjq201630);the China Agriculture Research System(CARS-17)

摘要:

LOX属于脂氧合酶超家族(lipoxygenase superfamily), 是脂肪氧化途径的重要因子, 广泛参与植物生长发育的调节和对外界刺激的抵御。本研究基于甘蔗(Saccharum spp.)转录组数据库, 通过RT-PCR技术, 首次从新台糖22号(ROC22)蔗芽中克隆获得ScLOX1基因(GenBank登录号为MK106188)的cDNA全长序列。生物信息学分析显示, ScLOX1基因cDNA序列长度为2813 bp, 开放读码框全长2664 bp, 编码887个氨基酸, 其编码蛋白的理论等电点为6.23, 不稳定系数为39.77, 亲水性平均值为-0.437, 无信号肽和跨膜结构, 但含有PLAT_LH2和Lipoxygenase活性位点, 与高粱(Sorghum bicolor) LOX (XP_002466613.1)的氨基酸序列相似性高达95.96%。预测ScLOX1基因的编码蛋白为酸性稳定亲水性非分泌蛋白, 属于type I类非传统9-LOX。qPT-PCR分析结果显示, ScLOX1基因在蔗芽组织中特异性表达。接种甘蔗黑穗病菌(Sporisorium scitamineum)后, ScLOX1基因的表达量在抗病品种崖城05-179中短暂上升, 但在感病品种ROC22中显著下降。分别对瞬时表达ScLOX1基因的本氏烟(Nicotiana benthamiana)植株叶片接种烟草茄病镰刀菌蓝色变种(Fusarium solani var. coeruleum)和青枯菌(Ralstonia solanacearum), 表型观察、3,3’-二氨基联苯胺(3,3’-diaminobenzidine, DAB)染色和烟草免疫相关基因的表达情况分析显示, ScLOX1基因的过表达能够增强本氏烟对烟草茄病镰刀菌蓝色变种的防御, 但对烟草青枯菌的作用与对照相比无明显差异。研究还发现, ScLOX1基因的表达受茉莉酸甲酯和水杨酸抑制下调, 但受脱落酸、氯化钠和聚乙二醇诱导上调。以上结果为深入研究甘蔗ScLOX1基因的功能提供参考资料。

关键词: 甘蔗, 脂氧合酶, 生物信息学, 实时荧光定量PCR, 生物和非生物胁迫

Abstract:

LOX, which belongs to the lipoxygenase superfamily, is an important factor for fat oxidation and widely involved in the regulation of plant growth and development and the resistance to external stimuli. In this study, based on sugarcane (Saccharum spp.) transcriptome database, we first cloned a full-length cDNA sequence of ScLOX1 gene (GenBank accession number: MK106188) from ROC22 bud by RT-PCR. Bioinformatics analysis showed that the cDNA length of ScLOX1 gene was 2813 bp which had a 2664 bp length of open reading frame, encoding 887 amino acids. The theoretical isoelectric point, instability coefficient, and average hydrophilicity of the ScLOX1 protein were 6.23, 39.77, and -0.437, respectively. There were no signal peptide and transmembrane structure, but the PLAT_LH2 and lipoxygenase active sites in ScLOX1 protein. The similarity of amino acid sequences between ScLOX1 and Sorghum bicolor LOX (XP_002466613.1) was 95.96%. The protein encoded by ScLOX1 gene was predicted to be an acid-stable, hydrophilic, and non-secreted protein which belongs to the type I non-traditional 9-LOX. qRT-PCR results showed that ScLOX1 was specifically expressed in sugarcane bud tissue. The expression level of ScLOX1 gene was transiently increased in the smut-resistant sugarcane variety Yacheng05-179 but significantly decreased in the smut-susceptible sugarcane variety ROC22 after inoculated with Sporisorium scitamineum. When leaves of Nicotiana benthamiana were transiently overexpressed ScLOX1 gene and inoculated with tobacco pathogens Fusarium solani var. coeruleum and Ralstonia solanacearum, respectively, the results of phenotypic observation, 3,3’-diaminobenzidine (DAB) staining and expression analysis of tobacco immune-related genes revealed that the overexpression of ScLOX1 gene could enhance the defense of N. benthamiana to the F. solani var. coeruleum, but had no significant difference with the control on the defense effect against R. solanacearum. In addition, the expression level of ScLOX1 was down-regulated by methyl jasmine and salicylic acid, but up-regulated by abscisic acid, sodium chloride and polyethylene glycol. The above results provide references for further study on the function of sugarcane ScLOX1 gene.

Key words: sugarcane, lipoxygenase, bioinformatics, real-time flourescent quantitative PCR, biotic and abiotic stresses

表1

本研究所用引物序列及用途"

引物名称
Primer name
引物序列
Primer sequence (5'-3')
用途
Purpose
ScLOX1-cDNAF CCATCCATCCACCAACCA RT-PCR
ScLOX1-cDNAR ACGGCACAGCACAACATTTA RT-PCR
GAPDH-QF CACGGCCACTGGAAGCA qRT-PCR
GAPDH-QR TCCTCAGGGTTCCTGATGCC qRT-PCR
ScLOX1-QF ATCATTGAGGCTGTTCTT qRT-PCR
ScLOX1-QR TCTGCTATTAGTGGATTGT qRT-PCR
ScLOX1-Gate-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTTCTGGCACGGGGTCGC Transient overexpression vector construction
ScLOX1-Gate-R GGGGACCACTTTGTACAAGAAAGCTGGGTCTATGGAGATGCTGTTGGGAA Transient overexpression vector construction
M13-F TGTAAAACGACGGCCAGT Transient overexpression vector construction
M13-R CAGGAAACAGCTATGACC Transient overexpression vector construction
NtHSR201-F CAGCAGTCCTTTGGCGTTGTC qRT-PCR after transient overexpression
引物名称
Primer name
引物序列
Primer sequence (5'-3')
用途
Purpose
NtHSR201-R GCTCAGTTTAGCCGCAGTTGTG qRT-PCR after transient overexpression
NtHSR203-F TGGCTCAACGATTACGCA qRT-PCR after transient overexpression
NtHSR203-R GCACGAAACCTGGATGG qRT-PCR after transient overexpression
NtHSR515-F TTGGGCAGAATAGATGGGTA qRT-PCR after transient overexpression
NtHSR515-R TTTGGTGAAAGTCTTGGCTC qRT-PCR after transient overexpression
NtPR-1a/c-F AACCTTTGACCTGGGACGAC qRT-PCR after transient overexpression
NtPR-1a/c-R GCACATCCAACACGAACCGA qRT-PCR after transient overexpression
NtPR2-F TGATGCCCTTTTGGATTCTATG qRT-PCR after transient overexpression
NtPR2-R AGTTCCTGCCCCGCTTT qRT-PCR after transient overexpression
NtPR3-F CAGGAGGGTATTGCTTTGTTAGG qRT-PCR after transient overexpression
NtPR3-R CGTGGGAAGATGGCTTGTTGTC qRT-PCR after transient overexpression
NtEFE26-F CGGACGCTGGTGGCATAAT qRT-PCR after transient overexpression
NtEFE26-R CAACAAGAGCTGGTGCTGGATA qRT-PCR after transient overexpression
NtAccdeaminase-F TCTGAGGTTACTGATTTGGATTGG qRT-PCR after transient overexpression
NtAccdeaminase-R TGGACATGGTGGATAGTTGCT qRT-PCR after transient overexpression
NtEF-1α-F TGCTGCTGTAACAAGATGGATGC qRT-PCR after transient overexpression
NtEF-1α-R GAGATGGGGACAAAGGGGATT qRT-PCR after transient overexpression

图1

ScLOX1基因核苷酸序列及其推导的氨基酸序列 下画线部分为克隆引物; *表示终止密码子。"

图2

ScLOX1蛋白三级结构预测"

图3

ScLOX1氨基酸序列的保守结构域"

图4

ScLOX1与其他植物LOX蛋白构建的系统发育树 ScLOX1用▲标识。玉米LOXs: ZmLOX1 (AF271894)、ZmLOX3 (AF329371)、ZmLOX6 (DQ335764)、ZmLOX10 (DQ335768)、ZmLOX11 (DQ335769); 水稻LOXs: OsLOX1 (DQ389164)、r9-LOX1 (AB099850); 番茄LOXs: TomLOXA (U09026)、TomLOXB (U09025)、TomLOXC (U37839)、TomLOXD (U37840)、TomLOXE (AY008278)、TomLOXF (FJ617476); 拟南芥LOXs: AtLOX1 (NM_104376)、AtLOX2 (AY062611)、AtLOX3 (AJ249794)、AtLOX4 (NM_105911); 烟草LOXs: NaLOX1 (X84040)、NaLOX2 (AY254348)、NaLOX3 (AY254349); 马铃薯LOXs: StLOX1 (X95513)、StLOX2 (X96405)、StLOX3 (X96406); 大豆LOXs: GmLOX9 (EU003576)、GmLOX10 (EU003577); 花生LOX: PnLOX2 (DQ068249); 豌豆LOX: LOXN2 (AJ749702); 桃LOXs: PpLOX1 (EU883638)、PpLOX2 (FJ029110)、PpLOX3 (FJ032015)、PpLOX4 (EF568783); 葡萄LOXs: VvLOXA (FJ858255)、VvLOXC (FJ858256)、VvLOXO (FJ858257); 橄榄LOXs: OeLOX (EU678670)、Oep1LOX2 (EU513352)、Oep2LOX2 (EU513353); 辣椒LOXs: CaLOX1 (FJ377708)、CaLOX2 (JQ219046); 杨树LOXs: PdLOX1 (DQ131178)、PdLOX2 (DQ131179); 杏LOXs: LOX1:Pd:1 (AJ404331)、LOX1:Pd:2 (AJ418043); 菜豆LOX: PvLOX6 (EF196866); 甘蓝LOX: BoLOX (EF123056); 鬼箭锦鸡儿LOX: CjLOX (EF530043); 茶树LOX: CasLOX1 (EU195885); 榛子LOX: CaLOX (AJ417975)。"

图5

甘蔗ScLOX1与其他植物LOX氨基酸序列比对 文本框表示底物结合结构域(Domain I和II)和C末端保守区域。箭头表示与铁结合有关的保守氨基酸残基。加号为TH(V)/R(K), 是一个对确定加氧位置特异性至关重要的基序。OsLOX1: 水稻(DQ389164); ZmLOX1: 玉米(AF271894); HvLOXC: 大麦(L37358); SbLOX4: 高粱(XP_002466613); SiLOX4: 谷子(XP_ 004982082)。"

图6

ScLOX1基因在甘蔗ROC22不同组织中的表达情况 以甘油醛-3-磷酸脱氢酶基因(glyceraldehyde-3-phosphate dehydrogenase, GAPDH)为内参基因。数据点为平均值±标准误(n = 3)。Leaf: 叶; Stem pith: 蔗肉; Bud: 蔗芽; Epidermis: 蔗皮; Root: 根。"

图7

不同基因型甘蔗与黑穗病菌互作过程中ScLOX1基因的表达量 以甘油醛-3-磷酸脱氢酶基因(glyceraldehyde-3-phosphate dehydrogenase, GAPDH)作为内参。柱上不同的字母代表在P < 0.05时显著性的差异。数据点为平均值±标准误(n = 3)。Yacheng 05-179代表甘蔗抗黑穗病品种; ROC22代表甘蔗感黑穗病品种。"

图8

ScLOX1基因在本氏烟叶片中瞬时表达 A: RT-PCR检测ScLOX1基因在接种携带35S::00和35S::ScLOX1载体的农杆菌菌株GV3101的本氏烟叶片1 d的表达情况。B: 对接种携带35S::00和35S::ScLOX1载体的农杆菌2 d的本氏烟叶片进行DAB染色。(1)和(2)分别代表索尼相机和显微镜拍摄的图像。C: 烟草免疫相关标记基因在接种携带35S::00和35S::ScLOX1载体的农杆菌1 d的本氏烟叶片中的相对表达水平。D和F: 瞬时过表达ScLOX1基因1 d后接种烟草青枯菌和茄病镰刀菌蓝色变种1 d和7 d时的本氏烟叶片发病情况和DAB染色结果。(1)和(2)分别代表索尼相机和显微镜拍摄的图像。E和G: 烟草免疫相关标记基因在瞬时过表达ScLOX1基因的本氏烟叶片接种青枯菌和茄病镰刀菌蓝色变种1 d和7 d时的表达情况分析。烟草免疫相关标记基因包括HR标记基因NtHSR201、NtHSR203和NtHSR515, SA途径相关基因NtPR-1a/c, JA途径相关基因NtPR2和NtPR3, ET合成依赖基因NtEFE26和NtAccdeaminase。内参基因为NtEF-1α基因。柱上不同的字母代表在P < 0.05时显著性的差异。所有的点均为平均值±标准误 (n = 3)。a和b分别表示载体35S::00和35S::ScLOX1。"

图9

ScLOX1基因在不同植物激素胁迫下的相对表达量 内参基因为甘油醛-3-磷酸脱氢酶基因(glyceraldehyde-3-phosphate dehydrogenase, GAPDH)。柱上不同的字母代表在P < 0.05时显著性的差异。数据点为平均值±标准误(n = 3)。"

图10

ScLOX1基因在NaCl和PEG胁迫下的表达情况 内参基因为甘油醛-3-磷酸脱氢酶基因(glyceraldehyde-3-phosphate dehydrogenase, GAPDH)。柱上不同小写字母代表在P < 0.05时显著性的差异。数据点为平均值±标准误(n = 3)。"

[1] Brash A R . Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem, 1999,274:23679-23682.
doi: 10.1074/jbc.274.34.23679
[2] 李彩凤, 赵丽影, 陈业婷, 越鹏, 谷维, 王园园, 滕祥勇, 王楠博 . 高等植物脂氧合酶研究进展. 东北农业大学学报, 2010,41(10):143-149.
Li C F, Zhao L Y, Chen Y T, Yue P, Gu W, Wang Y Y, Teng X Y, Wang N B . Research advances on higher plant. J Northeast Agric Univ, 2010,41(10):143-149 (in Chinese with English abstract).
[3] 张冲 . 甜瓜脂氧合酶基因家族成员鉴定、表达调控及CmLOX8在果实香气合成中的作用. 沈阳农业大学博士学位论文, 辽宁沈阳, 2016.
Zhang C . Identification, Expression and Regulation of Lipoxygenase Gene Family in Melon (Cucumis melo var. makuwa Maldno) and the Role of CmLOX18 in Synthesis of Fruit Aroma Volatiles. PhD Dissertation of Shenyang Agricultural University, Shenyang, Liaoning, China, 2016 (in Chinese with English abstract).
[4] 曹嵩晓, 张冲, 汤雨凡, 齐红岩 . 植物脂氧合酶蛋白特性及其在果实成熟衰老和逆境胁迫中的作用. 植物生理学报, 2014,50:1096-1108.
Cao S X, Zhang C, Tang Y F, Qi H Y . Protein characteristic of the plant lipoxygenase and the function on fruit ripening and senescence and adversity stress. Plant Physiol J, 2014,50:1096-1108 (in Chinese with English abstract).
[5] Wang R, Shen W B, Liu L L, Jiang L, Liu Y Q, Su N, Wan J M . A novel lipoxygenase gene from developing rice seeds confers dual position specificity and responds to wounding and insect attack. Plant Mol Biol, 2008,66:401-414.
doi: 10.1007/s11103-007-9278-0
[6] Feussner I, Wasternack C . The lipoxygenase pathway. Annu Rev Plant Biol, 2002,53:275-297.
doi: 10.1146/annurev.arplant.53.100301.135248
[7] Andreou A, Feussner I, Hause B, Wasternack C, Strack D . Lipoxygenases-structure and reaction mechanism. Phytochemistry, 2009,70:1504-1510.
doi: 10.1016/j.phytochem.2009.05.008
[8] Dubbs W E, Grimes H D . The mid-pericarp cell layer in soybean pod walls is a multicellular compartment enriched in specific lipoxygenase isoforms. Plant Physiol, 2000,123:1281-1288.
doi: 10.1104/pp.123.4.1281
[9] 黄洁雪 . 水稻种胚脂氧合酶基因OsLOX2的克隆与功能分析. 南京农业大学硕士学位论文, 江苏南京, 2011.
Huang J X . Isolation and Characterization of Seed OSLOX2 Gene in Rice. MS Thesis of Nanjing Agricultural University, Jiangsu, Nanjing, China, 2011 (in Chinese with English abstract).
[10] Axelrod B, Cheesbrough T M, Laakso S . Lipoxygenase from soybeans: EC 1.13.11.12 Linoleate: oxygen oxidoreductase. Method Enzymol, 1981,71:441-451.
doi: 10.1016/0076-6879(81)71055-3
[11] Melan M A, Dong X N, Endara M E, Davis K R, Ausubel F M, Peterman T K . An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyl jasmonate. Plant Physiol, 1993,101:441-450.
[12] Ida S, Masaki Y, Morita Y . The isolation of multiple forms and product specificity of rice lipoxygenase. J Agric Chem Soc Jpn, 2006,47:637-641.
[13] Ferrie B J, Beaudoin N, Burkhart W, Bowsher C G, Rothstein S J . The cloning of two tomato lipoxygenase genes and their differential expression during fruit ripening. Plant Physiol, 1994,106:109-118.
doi: 10.1104/pp.106.1.109
[14] Podolyan A, White J, Jordan B, Winefield C . Identification of the lipoxygenase gene family from Vitis vinifera and biochemical characterisation of two 13-lipoxygenases expressed in grape berries of Sauvignon Blanc. Funct Plant Biol, 2010,37:767-784.
[15] Yang X Y, Jiang W J, Yu H J . The expression profiling of the lipoxygenase (LOX) family genes during fruit development, abiotic stress and hormonal treatments in cucumber(Cucumis sativus L.). Int J Mol Sci, 2012,13:2481-2500.
[16] Liavonchanka A, Feussner I . Lipoxygenases: occurrence, functions and catalysis. J Plant Physiol, 2006,163:348-357.
doi: 10.1016/j.jplph.2005.11.006
[17] Grechkin A . Recent developments in biochemistry of the plant lipoxygenase pathway. Prog Lipid Res, 1998,37:317-352.
doi: 10.1016/S0163-7827(98)00014-9
[18] 李靖, 赵沛基, 鲁春华, 刘小烛, 曾英, 沈月毛 . 水杨酸诱导美登木悬浮细胞产生脂氧合酶及多羟基脂肪酸的研究. 植物分类与资源学报, 2004,26:543-548.
Li J, Zhao P J, Lu C H, Liu X Z, Zeng Y, Shen Y M . Studies on lipoxygenase and polyhydroxy fatty acid in SA-elicited Maytenus hookeri suspension cells. Plant Diver Resour, 2004,26:543-548 (in Chinese with English abstract).
[19] 刘南南, 江玲, 张文伟, 刘玲珑, 翟虎渠, 万建民 . 水稻种胚LOX3基因在逆境胁迫中的作用. 中国水稻科学, 2008,22:8-14.
Liu N N, Jiang L, Zhang W W, Liu L L, Zhai H Q, Wan J M . Role of embryo LOX3 gene under adversity stress in rice. Chin J Rice Sci, 2008,22:8-14 (in Chinese with English abstract).
[20] Burow G B, Gardner H W, Keller N P . A peanut seed lipoxygenase responsive to Aspergillus colonization. Plant Mol Biol, 2000,42:689-701.
[21] 邵琪 . 接种枯萎病菌对甜瓜脂氧合酶活性及CmLOXs表达的影响. 沈阳农业大学硕士学位论文, 辽宁沈阳, 2016.
Shao Q . Effects of Inoculated by Fusarium oxysporum on LOX Activity and CmLOXs Expression of Melon (Cucumis melo var. makuwa Makino). MS Thesis of Shenyang Agricultural University, Shenyang, China, 2016 (in Chinese with English abstract).
[22] Han M Y, Zhang T, Zhao C P, Zhi J H . Regulation of the expression of lipoxygenase genes in Prunus persica fruit ripening. Acta Physiol Plant, 2011,33:1345-1352.
[23] Zhang B, Chen K S, Bowen J, Allan A, Espley R, Karunairetnam S, Ferguson I . Differential expression within the LOX gene family in ripening kiwifruit. J Exp Bot, 2006,57:3825-3836.
[24] Bae K S, Rahimi S, Kim Y J, Devi B S R, Khorolragchaa A, Sukweenadhi J, Silva J, Myagmarjav D, Yang D C . Molecular characterization of lipoxygenase genes and their expression analysis against biotic and abiotic stresses in Panax ginseng. Eur J Plant Pathol, 2016,145:331-343.
[25] 贾庆利, 巩振辉, 李大伟 . 辣椒定位于叶绿体的13-脂氧合酶基因(CaLOX2)克隆及表达分析. 农业生物技术学报, 2012,20:1126-1134.
Jia Q L, Gong Z H, Li D W . Cloning and expression characterization of chloroplast-targeted 13-lipoxygenase gene (CaLOX2) in Capsicum annuum L. J Agric Biotechnol, 2012,20:1126-1134 (in Chinese with English abstract).
[26] Garsmeur O, Droc G, Antonise R, Grimwood J, Potier B, Aitken K, Jenkins J, Martin G, Charron C, Hervouet C, Costet L, Yahiaoui N, Healey A, Sims D, Cherukuri Y, Sreedasyam A, Kilian A, Chan A, Sluys M A V, Swaminathan K, Town C, Bergès H, Simmons B, Glaszmann J C, Vossen E V D, Henry R, Schmutz J, D’Hont A . A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nat Commun, 2018,9:2638, doi: 10.1038/s41467-018-05051-5.
doi: 10.1038/s41467-018-05051-5
[27] Gómez-Merino F C, Trejo-Téllez L I, Sentíes-Herrera H E . Sugarcane as a Novel Biofactory: Potentialities and Challenges. Germany: Springer International Publishing, 2014. pp 129-149.
[28] Su Y C, Guo J L, Ling H, Chen S S, Wang S S, Xu L P, Allan A C, Que Y X . Isolation of a novel peroxisomal catalase gene from sugarcane, which is responsive to biotic and abiotic stresses. PLoS One, 2014,9:e84426, doi: 10.1371/journal.pone.0084426.
doi: 10.1371/journal.pone.0084426
[29] 苏亚春 . 甘蔗应答黑穗病菌侵染的转录组与蛋白组研究及抗性相关基因挖掘. 福建农林大学博士学位论文, 福建福州, 2014.
Su Y C . Transcriptomics and Proteomics of Sugarcane Response to Sporisorium scitamineum Infection and Mining of Resistance-related Genes. PhD Dissertation of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2014 (in Chinese with English abstract).
[30] Liu F, Huang N, Wang L, Ling H, Sun T T, Ahmad W, Muhammad K, Guo J X, Xu L P, Gao S W, Que Y X, Su Y C . A novel L-ascorbate peroxidase 6 gene, ScAPX6, plays an important role in the regulation of response to biotic and abiotic stresses in sugarcane. Front Plant Sci, 2018,8:2262, doi: 10.3389/fpls. 2017.02262.
[31] Yang Y T, Zhang X, Su Y C, Zou J K, Wang Z T, Xu L P, Que Y X . miRNA alteration is an important mechanism in sugarcane response to low-temperature environment. BMC Genomics, 2017,18:833, doi: 10.1186/s12864-017-4231-3.
doi: 10.1186/s12864-017-4231-3
[32] 王玲, 刘峰, 戴明剑, 孙婷婷, 苏炜华, 王春风, 张旭, 毛花英, 苏亚春, 阙友雄 . 甘蔗ScWRKY4基因的克隆与表达特性分析. 作物学报, 2018,44:1367-1379.
Wang L, Liu F, Dai M J, Sun T T, Su W H, Wang C F, Zhang X, Mao H Y, Su Y C, Que Y X . Cloning and expression characteristic analysis of ScWRKY4 gene in sugarcane. Acta Agron Sin, 2018,44:1367-1379 (in Chinese with English abstract).
[33] Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -∆∆CT method . Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262
[34] Choi D S, Hwang I S, Hwang B K . Requirement of the cytosolic interaction between pathogenesis-related protein10 and leucine-rich repeat protein1 for cell death and defense signaling in pepper. Plant Cell, 2012,24:1675-1690.
doi: 10.1105/tpc.112.095869
[35] Su Y C, Xu L P, Xue B T, Wu Q B, Guo J L, Wu L G, Que Y X . Molecular cloning and characterization of two pathogenesis-related β-1,3-glucanase genes ScGluA1 and ScGluD1 from sugarcane infected by Sporisorium scitamineum. Plant Cell Rep, 2013,32:1503-1519.
[36] Liu F, Sun T T, Wang L, Su W H, Gao S W, Su Y C, Xu L P, Que Y X . Plant jasmonate ZIM domain genes: shedding light on structure and expression patterns of JAZ gene family in sugarcane. BMC Genomics, 2017,18:771, doi: 10.1186/s12864-017-4142-3.
[37] Kim E S, Choi E, Kim Y, Cho K, Lee A, Shim J, Rakwal R, Agrawal G K, Han O . Dual positional specificity and expression of non-traditional lipoxygenase induced by wounding and methyl jasmonate in maize seedlings. Plant Mol Biol, 2003,52:1203-1213.
doi: 10.1023/B:PLAN.0000004331.94803.b0
[38] Wilson R A, Gardner H W, Keller N P . Cultivar-dependent expression of a maize lipoxygenase responsive to seed infesting fungi. Mol Plant Microbe Interact, 2001,14:980-987.
doi: 10.1094/MPMI.2001.14.8.980
[39] 王少杰, 刘晓慧, 胡增辉, 冷平生 . 金鱼草脂氧合酶基因AmLOX1的克隆及表达分析. 中国细胞生物学学报, 2018,40:905-912.
Wang S J, Liu X H, Hu Z H, Leng P S . Cloning and expression analysis of lipoxygenase gene AmLOX1 from snapdragon. Chin J Cell Biol, 2018,40:905-912 (in Chinese with English abstract).
[40] Royo J, Vancanneyt G, Pérez A G, Sanz C, Störmann K, Rosahl S, Sánchezserrano J J . Characterization of three potato lipoxygenases with distinct enzymatic activities and different organ- specific and wound-regulated expression patterns. J Biol Chem, 1996,271:21012-21019.
doi: 10.1074/jbc.271.35.21012
[41] Kolomiets M V, Hannapel D J, Chen H, Tymeson M, Gladon R J . Lipoxygenase is involved in the control of potato tuber development. Plant Cell, 2001,13:613-626.
doi: 10.1105/tpc.13.3.613
[42] Porta H, Rueda-Benítez P, Campos F, Colmenero-Flores J M, Colorado J M, Carmona M J, Covarrubias A A, Rocha-Sosa M . Analysis of lipoxygenase mRNA accumulation in the common bean (Phaseolus vulgaris L.) during development and under stress conditions. Plant Cell Physiol, 2013,40:850-858.
[43] Marmey P, Jalloul A, Alhamdia M, Assigbetse K, Cacas J L, Voloudakis A, Champion A, Clerivet A, Jean-Luc M, Nicole M . The 9-lipoxygenase GhLOX1 gene is associated with the hypersensitive reaction of cotton Gossypium hirsutum to Xanthomonas campestris pv. malvacearum. Plant Physiol Biochem, 2007,45:596-606.
[44] 辛翠花, 郭江波 . 接种晚疫病菌对马铃薯茉莉酸合成关键酶基因表达的影响. 广东农业科学, 2012,39(16):152-153.
Xin C H, Guo J B . Effects on gene expressions of key enzymes in jasmonic acid biosynthesis after infection of Phytophthora infestans in potato. Guangdong Agric Sci, 2012,39(16):152-153 (in Chinese with English abstract).
[45] Hu T Z, Zeng H, Hu Z L, Qv X X, Chen G P . Overexpression of the tomato 13-lipoxygenase gene TomloxD increases generation of endogenous jasmonic acid and resistance to Cladosporium fulvum and high temperature. Plant Mol Biol Rep, 2013,31:1141-1149.
[46] Nalam V J, Alam S, Keereetaweep J, Venables B, Burdan D, Lee H, Trick H N, Sarowar S, Makandar R, Shah J . Facilitation of Fusarium graminearum infection by 9-lipoxygenases in Arabidopsis and wheat. Mol Plant Microbe Interact, 2015,28:1142-1152.
[47] Sundar A R, Barnabas E L, Malathi P, Viswanathan R . A Mini- review on Smut Disease of Sugarcane Caused by Sporisorium scitamineum. Croatia: InTech, 2012. pp 109-128.
[48] Melech-Bonfil S, Sessa G . Tomato MAPKKKε is a positive regulator of cell-death signaling networks associated with plant immunity. Plant J, 2010,64:379-391.
doi: 10.1111/tpj.2010.64.issue-3
[49] Lim C W, Han S W, Hwang I S, Kim D S, Hwang B K, Lee S C . The pepper lipoxygenase CaLOX1 plays a role in osmotic, drought and high salinity stress response. Plant Cell Physiol, 2015,56:930-942.
[50] Cheng Q, Zhang B, Zhuge Q, Zeng Y R, Wang M X, Huang M R . Expression profiles of two novel lipoxygenase genes in Populus deltoides. Plant Sci, 2006,170:1027-1035.
[51] Tuteja N . Abscisic acid and abiotic stress signaling. Plant Signal Behav, 2007,2:135-138.
doi: 10.4161/psb.2.3.4156
[52] Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J . Requirement of salicylic acid for the induction of systemic acquired resistance. Science, 1993,261:754-756.
doi: 10.1126/science.261.5122.754
[53] Liu B, Xue X D, Cui S P, Zhang X Y, Han Q M, Zhu L, Liang X F, Wang X J, Huang L L, Chen X M, Kang Z S . Cloning and characterization of a wheat β-1,3-glucanase gene induced by the stripe rust pathogen Puccinia striiformis f. sp. tritici. Mol Biol Rep, 2010,37:1045-1052.
[1] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[2] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[3] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[4] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[5] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341.
[6] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[7] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[8] 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530.
[9] 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价[J]. 作物学报, 2021, 47(8): 1531-1539.
[10] 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296.
[11] 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042.
[12] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893.
[13] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[14] 张荣跃, 王晓燕, 杨昆, 单红丽, 仓晓燕, 李婕, 王长秘, 尹炯, 罗志明, 李文凤, 黄应昆. 甘蔗新品种及主栽品种对褐锈病抗性与Bru1基因分子检测[J]. 作物学报, 2021, 47(2): 376-382.
[15] 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!