欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (9): 1386-1397.doi: 10.3724/SP.J.1006.2019.94074

• 耕作栽培· 生理生化 • 上一篇    下一篇

播种深度对花生生育进程和叶片衰老的影响及其生理机制

甄晓宇,杨坚群,栗鑫鑫,刘兆新,高芳,赵继浩,李颖,钱必长,李金融,杨东清(),李向东()   

  1. 山东农业大学农学院/作物生物学国家重点实验室, 山东泰安 271018
  • 收稿日期:2019-01-03 接受日期:2019-04-15 出版日期:2019-09-12 网络出版日期:2019-05-14
  • 通讯作者: 杨东清,李向东
  • 作者简介:E-mail: xyzhen2016@163.com
  • 基金资助:
    本研究由国家重点研发计划项目(2018YFD1000900);山东省现代农业体系花生创新团队首席专家专项基金(SDAIT-04-01);山东省重大科技创新工程项目资助(2018YFJH0601-3)

Effects and physiological mechanisms of sowing depth on the growth progress and leaf senescence of peanut

ZHEN Xiao-Yu,YANG Jian-Qun,LI Xin-Xin,LIU Zhao-Xin,GAO Fang,ZHAO Ji-Hao,LI Ying,QIAN Bi-Chang,LI Jin-Rong,YANG Dong-Qing(),LI Xiang-Dong()   

  1. College of Agronomy, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China
  • Received:2019-01-03 Accepted:2019-04-15 Published:2019-09-12 Published online:2019-05-14
  • Contact: Dong-Qing YANG,Xiang-Dong LI
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2018YFD1000900);the Shandong Modern Agricultural Technology & Industry System(SDAIT-04-01);Shandong Key Research and Development Program(2018YFJH0601-3)

摘要:

在春播、土壤水分适宜以及起垄覆膜种植模式条件下, 选用大花生品种山花108, 设置3、5、7、9、11、13和15 cm (SD3、SD5、SD7、SD9、SD11、SD13和SD15) 7种播种深度, 研究播种深度对花生生育进程、叶绿素含量、光合性能、干物质积累量、抗氧化酶活性及产量形成的影响。2年结果表明, 播种深度明显影响花生出苗时间, 与SD5处理相比, SD15处理的出苗期推迟5 d, 产量形成期缩短2.5 d。播深过浅(3 cm)或过深(>7 cm)显著降低了植株主茎高和侧枝长, 导致叶面积指数(LAI)显著降低; 且降低了产量形成期叶片叶绿素含量和光合速率, 导致植株干物质积累量显著降低。播种过深(>7 cm)显著降低了产量形成期叶片可溶性蛋白含量和超氧化物歧化酶(SOD)及过氧化物酶(POD)活性, 丙二醛(MDA)含量显著提高, 导致叶片膜脂过氧化加剧。各播深处理相比, SD5处理的荚果和籽仁产量较高, 主要是由于其单株结果数、单果重及出仁率的提高, 播种深度超过7 cm后, 减产显著。因而, 春花生适宜的播种深度应控制在5 cm。

关键词: 播种深度, 花生, 生育进程, 抗氧化性, 产量

Abstract:

A 2-year field study was conducted using Shanhua 108 with seven levels of sowing depth (SD3, SD5, SD7, SD9, SD11, SD13, and SD15) by ridging and mulching under the suitable soil moisture condition to identify and assess the effects of sowing depth on growth progress, chlorophyll content, photosynthetic characteristics, dry matter accumulation, antioxidant enzyme activities and yield formation in peanut. The sowing depth significantly affected the emergence time of peanut. Compared with SD5 treatment, the seedling emergence time of SD15 was delayed five days (d), and the yield formation period was shortened 2.5 d. The shallow seeding treatment (SD3) and deep-planting treatments (depth >7 cm) significantly reduced the height of main stem and the length of branch, resulting in a decrease in leaf area index (LAI). Moreover, the chlorophyll content and net photosynthetic rate during yield formation period of those treatments were significantly decreased, leading to a decrease of dry matter accumulation of plants. At the same time, increasing sowing depth significantly reduced soluble protein content, superoxide dismutase (SOD) and peroxidase (POD) activities, increased malonaldehyde (MDA) content during the yield formation period. The pod yield and seed yield in SD5 treatment was the highest due to the highest pod number per plant, the single pod weight and shelling rate, and deep-sowing (depth >7 cm) was adverse to yield. Therefore, the appropriate sowing depth should be 5 cm in the peanut cultivation practice.

Key words: sowing depth, peanut, growth progress, antioxidant system, yield

表1

2017年和2018年花生出苗期日平均气温、相对湿度和降水量"

播种后天数
Days after sowing (d)
2017 2018
平均气温
Average temperature (°C)
相对湿度
Relative humidity (%)
降水量
Precipitation
(mm)
平均气温
Average temperature (°C)
相对湿度
Relative humidity (%)
降水量
Precipitation
(mm)
1 23.4 64 0 18.2 73 1.3
2 23.6 53 0 19.8 65 0
3 23.7 47 0 21.3 53 0
4 20.1 42 0 21.6 37 0
5 20.9 45 13 20.2 36 0
6 19.7 61 0 20.3 42 0
7 23.2 54 0 18.4 70 0
8 26.0 49 0 19.9 68 0
9 26.3 54 0 24.5 66 0
10 25.8 51 0 26.2 55 0
11 24.8 58 0 27.1 71 6.4
12 25.9 61 0 25.2 79 3.8

图1

2017年和2018年花生生育期降水量和平均气温"

图2

播种深度对花生生育进程的影响 SD3、SD5、SD7、SD9、SD11、SD13和SD15处理分别表示播种深度为3、5、7、9、11、13和15 cm; VE-R8: 花生生长时期。"

图3

播种深度对花生干物质积累量的影响 缩写同图2。"

图4

播种深度对花生主茎高和侧枝长的影响"

表2

播种深度对花生叶片叶绿素含量的影响"

生育时期
Growth stage
处理
Treatment
2017 2018
叶绿素a
Chl a
叶绿素b
Chl b
叶绿素a+b
Chl a+b
叶绿素a
Chl a
叶绿素b
Chl b
叶绿素a+b
Chl a+b
R3 SD3 1.90 b 0.78 b 2.68 b 2.15 a 0.90 a 3.05 b
SD5 1.94 a 0.81a 2.74 a 2.20 a 0.91 a 3.11 a
SD7 1.87 b 0.77 b 2.65 b 2.18 a 0.90 a 3.08 b
SD9 1.81 c 0.75 c 2.56 c 2.07 b 0.86 b 2.93 c
SD11 1.76 d 0.72 d 2.48 d 1.97 c 0.82 c 2.78 d
SD13 1.63 e 0.69 e 2.32 e 1.83 d 0.77 d 2.60 e
SD15 1.61 e 0.69 e 2.30 e 1.80 d 0.76 d 2.56 e
R5 SD3 2.24 b 0.90 b 3.15 b 2.46 b 0.93 b 3.39 b
SD5 2.37 a 0.93 a 3.30 a 2.55 a 0.97 a 3.53 a
SD7 2.37 a 0.89 b 3.27 a 2.40 bc 0.93 b 3.33 b
SD9 2.25 b 0.89 b 3.14 b 2.34 c 0.91 c 3.25 c
SD11 2.07 c 0.87 c 2.94 c 2.25 d 0.89 d 3.15 d
SD13 1.99 d 0.84 d 2.83 d 2.04 e 0.88 e 2.92 e
SD15 1.96 d 0.84 d 2.80 d 2.02 e 0.88 e 2.90 e
生育时期
Growth stage
处理
Treatment
2017 2018
叶绿素a
Chl a
叶绿素b
Chl b
叶绿素a+b
Chl a+b
叶绿素a
Chl a
叶绿素b
Chl b
叶绿素a+b
Chl a+b
R7 SD3 1.54 b 0.76 b 2.29 b 1.63 a 0.71 c 2.34 b
SD5 1.65 a 0.81 a 2.46 a 1.68 a 0.80 a 2.48 a
SD7 1.62 a 0.81 a 2.43 a 1.65 b 0.80 a 2.45 a
SD9 1.48 c 0.71 c 2.20 c 1.53 c 0.73 b 2.26 c
SD11 1.44 d 0.68 d 2.12 d 1.49 d 0.71 c 2.19 d
SD13 1.43 d 0.68 d 2.11 d 1.39 e 0.68 d 2.07 e
SD15 1.36 e 0.64 e 2.00 e 1.36 e 0.67 d 2.03 e
R8 SD3 1.28 b 0.61 b 1.89 b 1.20 c 0.64 b 1.84 b
SD5 1.44 a 0.65 a 2.09 a 1.51 a 0.68 a 2.19 a
SD7 1.28 b 0.58 bc 1.86 b 1.46 b 0.69 a 2.15 a
SD9 1.09 c 0.57 c 1.65 c 1.17 c 0.64 bc 1.81 b
SD11 0.76 d 0.53 d 1.30 d 0.99 d 0.61 c 1.61 c
SD13 0.74 de 0.52 d 1.26 d 0.91 e 0.56 d 1.47 d
SD15 0.69 e 0.51 d 1.21 e 0.90 e 0.55 d 1.45 d

图 5

播种深度对花生叶面积指数的影响"

图6

播种深度对花生叶片净光合速率的影响"

图7

播种深度对花生叶片SOD活性的影响"

图8

播种深度对花生叶片POD活性的影响"

图9

播种深度对花生叶片MDA含量的影响"

图10

播种深度对花生叶片可溶性蛋白含量的影响"

表3

播种深度对花生荚果产量及产量构成因子的影响"

年份
Year
处理
Treatment
荚果产量
Pod yield
(kg hm-2)
籽仁产量
Kernel yield
(kg hm-2)
千克果数
Pods kg-1
单株果数
Pods per plant
出仁率
Shelling rate
(%)
2017 SD3 5645.6±30 bc 4036.4±46 c 490.7±11 c 15.0±0.7 b 71.1±0.5 d
SD5 5935.9±86 a 4406.8±72 a 425.3±7 e 17.2±0.4 a 74.3±0.3 a
SD7 5745.7±46 b 4197.9±34 b 452.7±3 d 15.6±0.5 b 73.1±0.2 b
SD9 5615.6±30 c 4057.4±26 c 454.0±4 d 14.8±0.8 b 72.3±0.6 c
SD11 5435.4±60 dc 3896.7±47 d 478.0±2 c 13.8±0.4 c 71.6±0.1 cd
SD13 5265.3±46 e 3757.9±34 e 507.3±8 b 12.8±0.8 d 71.2±0.3 d
SD15 5105.1±79 f 3563.8±48 f 531.3±10 a 11.0±0.7 e 69.6±0.1 e
2018 SD3 5335.3±46 c 3821.0±54 b 485.3±10 d 13.3±0.3 c 71.6±0.4 b
SD5 5655.7±69 a 4078.2±55 a 456.7±6 e 16.3±0.2 a 72.3±0.2 a
SD7 5475.5±97 b 3973.9±85 a 484.0±8 d 14.9±0.5 b 72.5±0.5 a
SD9 5285.3±79 c 3761.3±77 b 506.7±4 c 12.7±0.4 c 71.5±0.3 b
SD11 5275.3±63 c 3751.4±32 b 525.3±7 b 12.6±0.2 c 70.7±0.2 c
SD13 5085.1±46 d 3504.0±57 c 528.0±3 b 10.9±0.4 d 68.5±0.4 d
SD15 4894.9±60 e 3369.2±25 d 551.3±7 a 9.1±0.5 e 68.5±0.4 d
[1] 万书波, 单世华, 李春娟, 胡文广 . 我国花生安全生产现状与策略. 花生学报, 2005,34(1):1-4.
Wan S B, Shan S H, Li C J, Hu W G . Safety status and development strategy of peanut in China. J Peanut Sci, 2005,34(1):1-4 (in Chinese with English abstract).
[2] 屈宝香, 罗其友, 张晴, 周振亚 . 中国花生产业发展与食用植物油供给安全保障分析. 中国食物与营养, 2008, ( 11):13-15.
Qu B X, Luo Q H, Zhang Q, Zhou Z Y . Analysis on the development of peanut industry and the security of edible vegetable oil supply in China. Chin Food Nutr, 2008, ( 11):13-15 (in Chinese).
[3] 刘娟, 汤丰收, 张俊, 臧秀旺, 董文召, 易明林, 郝西 . 国内花生生产技术现状及发展趋势研究. 中国农学通报, 2017,33(22):13-18.
Liu J, Tang F S, Zhang J, Zang X W, Dong W Z, Yi M L, Hao X . Current status and development trends of peanut production technology in China. Chin Agric Sci Bull, 2017,33(22):13-18 (in Chinese with English abstract).
[4] 谢明惠, 陈浩梁, 张光玲, 林璐璐, 苏卫华 . 温度、土壤湿度和播种深度对花生种子萌发及幼苗生长的影响. 花生学报, 2017,46(2):52-59.
Xie M H, Chen H L, Zhang G L, Lin L L, Su W H . Effect of temperature, soil moisture and sowing depths on the seed germination and seeding growth of peanut. J Peanut Sci, 2017,46(2):52-59 (in Chinese with English abstract).
[5] Amram A, Fadidamyers A, Golan G, Nashef K, Ben-David R, Peleg Z . Effect of GA-sensitivity on wheat early vigor and yield components under deep sowing. Front Plant Sci, 2015,6:487. doi: 10.3389/fpls.2015.00487.
[6] Molatudi R L, Mariga I K . The effect of maize seed size and depth of planting on seedling emergence and seedling vigour. J Appl Sci Res, 2009,5:2234-2237.
[7] Gesch R W, Dose H L, Forcella F . Camelina growth and yield response to sowing depth and rate in the northern Corn Belt USA. Ind Crop Prod, 2017,95:416-421.
[8] Zuo Q S, Kuai J, Zhao L, Hu Z, Wu J S, Zhou G S . The effect of sowing depth and soil compaction on the growth and yield of rapeseed in rice straw returning field. Field Crops Res, 2017,203:47-54.
[9] Du L, Jiang H, Zhao G, Ren J Y . Gene cloning of Zm MYB59 transcription factor in maize and its expression during seed germination in response to deep-sowing and exogenous hormones. Plant Breed, 2017,136:834-844.
[10] 朱雅娟, 董鸣, 黄振英 . 沙埋和种子大小对固沙禾草沙鞭的种子萌发与幼苗出土的影响. 植物生态学报, 2005,29:730-739.
Zhu Y J, Dong M, Huang Z H . Effects of sand burial and seed size on seed germination and seeding emergence of Psammochloa villosa. Chin J Plant Ecol, 2005,29:730-739 (in Chinese with English abstract).
[11] Zhong S H, Shi H, Xue C, Wei N, Guo H W, Deng X W . Ethylene-orchestrated circuitry coordinates a seedling's response to soil cover and etiolated growth. Proc Natl Acad Sci USA, 2014,111:3913-3920.
[12] Özmerzi A, Karayel D, Topakci M . Effect of sowing depth on precision seeder uniformity. Biosyst Eng, 2002,82:227-230.
[13] Pang J Y, Palta P A, Rebetzke G J, Milroy S P . Wheat genotypes with high early vigour accumulate more nitrogen and have higher photosynthetic nitrogen use efficiency during early growth. Funct Plant Biol, 2014,41:215-222.
[14] 山东省农业科学院花生研究所. 花生不同播种深度研究简报. 山东农业科学, 1965, ( 2):61-63.
Institute of Peanut Science, Shandong Academy of Agricultural Sciences. Brief report on the study of different planting depths of peanut. Shandong Agric Sci, 1965, ( 2):61-63 (in Chinese).
[15] 郑婷, 樊高琼, 王秀芳, 吴中伟, 杨文钰, 毛树明, 孙万军, 宋宗奇 . 耕作方式、播深及覆土对机播套作小麦麦苗素质的影响. 农业工程学报, 2011,27(5):164-168.
Zheng T, Fan G Q, Wang X F, Wu Z W, Yang W Y, Mao S M, Sun W J, Song Z Q . Effect of tillage managements, sowing depth and soil-covering on the seedlings quality of mechanical sowing wheat under intercropping condition. Trans CSAE, 2011,27(5):164-168 (in Chinese with English abstract).
[16] 何进尚, 袁汉民, 张维军, 王小亮, 亢玲, 陈东升, 齐琨, 党根友 . 密度、播种深度对宁夏引黄灌区早熟冬小麦的影响. 江苏农业科学, 2017,45(24):63-67.
He J S, Yuan H M, Zhang W J, Wang X L, Kang L, Chen D S, Qi K, Dang G Y . Effects of density and seeding depth on precocious winter wheat in the Yellow River diversion irrigation area of Ningxia. Jiangsu Agric Sci, 2017,45(24):63-67 (in Chinese).
[17] 曹慧英, 史建国, 朱昆仑, 董树亭, 刘鹏, 赵斌, 张吉旺 . 播种深度对夏玉米冠层结构及光合特性的影响. 玉米科学, 2016,24(1):102-109.
Cao H Y, Shi J G, Zhu K L, Dong S T, Liu P, Zhao B, Zhang J W . Effects of sowing depth on canopy structure and photosynthetics characteristics of summer maize. J Maize Sci, 2016,24(1):102-109 (in Chinese with English abstract).
[18] Qin Y, Zhao Y K, Yang H, Li L, Yang J . Effects of sowing depth and sowing equipment on growth and yield of mechanized sowing maize. Asian Agric Res, 2018,10:51-53.
[19] Boote K J . Growth stages of peanut (Arachis hypogaea L.). Peanut Sci, 1982,9:35-40.
[20] Arnon D I . Copper enzymes in isolated chloroplast, poly-phenol oxidase in Beta vulgaris. Plant Physiol, 1949,24:1-15.
[21] 王爱国, 罗广华, 邵从本, 吴淑君, 郭俊彦 . 大豆种子超氧物歧化酶的研究. 植物生理学报, 1983,9:77-84.
Wang A G, Luo G H, Shao C B, Wu S J, Guo J Y . A study on the superoxide dismutase of soybean seeds. Acta Phytophysiol Sin, 1983,9:77-84 (in Chinese with English abstract).
[22] 李合生 . 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 164-165.
Li H S. Experimental Principle and Technique for Plant Physiology and Biochemistry. Beijing: Higher Education Press, 2000. pp 164-165(in Chinese).
[23] 林植芳, 李双顺, 林桂珠, 孙谷畴, 郭俊彦 . 水稻叶片的衰老与超氧物歧化酶活性及脂质过氧化作用的关系. 植物学报, 1984,26:605-615.
Lin Z F, Li S S, Lin G Z, Sun G C, Guo J Y . Super oxide dismutase activity and lipid peroxidation in relation to senescence of rice leaves. Acta Bot Sin, 1984,26:605-615 (in Chinese with English abstract).
[24] Bradford M M . A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976,72:248-254.
[25] 曹慧英, 王丁波, 史建国, 朱昆仑, 董树亭, 刘鹏, 赵斌, 张吉旺 . 播种深度对夏玉米幼苗性状和根系特性的影响. 应用生态学报, 2015,26:2397-2404.
Cao H Y, Wang D B, Shi J G, Zhu K L, Dong S T, Liu P, Zhao B, Zhang J W . Effects of sowing depth on seeding traits and root characteristics of summer maize. Chin J Appl Ecol, 2015,26:2397-2404 (in Chinese with English abstract).
[26] Sanusan S, Polthanee A, Seripong S, Audebert A, Mouret J C . Seedling establishment and yield of direct-seeded rice under different seeding depths. Khon Kaen Agric J, 2009,37:15-22.
[27] 向达兵, 邹亮, 彭镰心, 赵钢, 范昱, 韦爽, 宋超, 刘学仪, 海来吉木 . 适宜机播深度及覆土厚度提高苦荞幼苗素质. 农业工程学报, 2014,30(12):26-33.
Xiang D B, Zou L, Peng L X, Zhao G, Fan Y, Wei S, Song C, Liu X Y, Hailai J M . Appropriate mechanical sowing depth and soil-covering thickness improving seedling quality of Tartary buckwheat. Trans CSAE, 2014,30(12):26-33 (in Chinese with English abstract).
[28] 冯伟, 朱艳, 姚霞, 田永超, 曹卫星 . 基于高光谱遥感的小麦叶和叶面积指数监测. 植物生态学报, 2009,33:34-44.
Feng W, Zhu Y, Yao X, Tian Y C, Cao W X . Monitoring leaf day weight and leaf area index in wheat with hyperspectral remote sensing. Chin J Plant Ecol, 2009,33:34-44 (in Chinese with English abstract).
[29] 张晓艳, 刘锋, 王丽丽, 封文杰, 刘淑云, 朱建华 . 花生叶面积指数与特征导数光谱的相关性. 遥感技术与应用, 2010,25:668-673.
Zhang X Y, Liu F, Wang L L, Feng W J, Liu S Y, Zhu J H . Correlations of leaf area index (LAI) with eigen derivative spectrum in peanut. Remote Sens Technol Appl, 2010,25:668-673 (in Chinese with English abstract).
[30] Liu G J, Lyu C Y, Zhang X M, Wei J, Lu Y . Effect of water supply and sowing depth on seeding emergence in two haloxylon species in the jungar basin. Pak J Bot, 2015,47:859-865.
[31] Qin F F, Xu H L, Lyu D Q, Takano T . Responses of hypocotyl elongation to light and sowing depth in peanut seedlings. Food Agric Environ, 2012,10:607-612.
[32] Gechev T S, Breusegem F V, Stone J M, Denev I, Laloi C . Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays, 2010,28:1091-1101.
[33] Gill S S, Tuteja N . Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 2010,48:909-930.
[34] 尚庆文, 孔祥波, 王玉霞, 徐坤 . 土壤紧实度对生姜植株衰老的影响. 应用生态学报, 2008,19:782-786.
Shang Q W, Kong X B, Wang Y X, Xu K . Effects of soil compactness on ginger plant senescence. C hin J Appl Ecol, 2008,19:782-786 (in Chinese with English abstract).
[35] 代海芳, 欧行奇, 王伟, 武英霞 . 播种深度对小麦抗寒生理的影响. 甘肃农业科技, 2010, ( 2):9-11.
Dai H F, Ou X Q, Wang W, Wu Y X . Effects of sowing depth on cold resistant physiology of wheat. Gansu Agric Sci Technol, 2010, ( 2):9-11 (in Chinese with English abstract).
[36] 杨东清, 王振林, 尹燕枰, 倪英丽, 杨卫兵, 蔡铁, 彭佃亮, 徐彩龙, 崔正勇, 刘铁宁, 徐海成 . 外源ABA和6-BA对不同持绿型小麦旗叶衰老的影响及其生理机制. 作物学报, 2013,39:1096-1104.
Yang D Q, Wang Z L, Yin Y P, Ni Y L, Yang W B, Cai T, Peng D L, Xu C L, Cui Z Y, Liu T N, Xu H C . Effects of exogenous and 6-BA on flag leaf senescence in different types of stay-green wheat and relevant physiological mechanisms. Acta Agron Sin, 2013,39:1096-1104 (in Chinese with English abstract).
[37] Rebetzke G J, Richards R A, Fettell N A, Long M, Condon, Forrester R I, Botwright T L . Genotypic increases in coleoptile length improves stand establishment, vigour and grain yield of deep-sown wheat. Field Crops Res, 2007,100:10-23.
[38] 宋兆伟, 郝丽珍, 黄振英, 李娜, 赵清岩 . 光照和温度对沙芥和斧翅沙芥植物种子萌发的影响. 生态学报, 2010,30:2562-2568.
Song Z W, Hao L Z, Huang Z Y, Li N, Zhao Q Y . Effects of light and temperature on the germination of Pugionium cornutum(L.) Gaertn and Pugionium dolabratum Maxim. seeds. Acta Ecol Sin, 2010,30:2562-2568 (in Chinese with English abstract).
[39] 孙小玲, 许岳飞, 马鲁沂, 周禾 . 植株叶片的光合色素构成对遮阴的响应. 植物生态学报, 2010,34:989-999.
Sun X L, Xu Y F, Ma L Y, Zhou H . A review of acclimation of photosynthetic pigment composition in plant leaves to shade environment. Chin J Plant Ecol, 2010,34:989-999 (in Chinese with English abstract).
[40] Patel K G, Thankappan R, Mishra G P, Mandaliya V B, Kumar A, Dobaria J R . Transgenic peanut (Arachis hypogaea L.) overexpressing mtlDYT gene showed improved photosynthetic, physio-biochemical, and yield-parameters under soil-moisture deficit stress in lysimeter system. Front Plant Sci, 2017,8:1881. doi: 10.3389/fpls.2017.01881.
[41] 殷文, 冯福学, 赵财, 于爱忠, 柴强, 胡发龙, 郭瑶 . 小麦秸秆还田方式对轮作玉米干物质累积分配及产量的影响. 作物学报, 2016,42:751-757.
Yin W, Feng F X, Zhao C, Yu A Z, Chai Q, Hu F L, Guo Y . Effect of straw returning patterns on characteristics of dry matter accumulation, distribution and yield of rotation maize. Acta Agron Sin, 2016,42:751-757 (in Chinese with English abstract).
[42] 王振华, 王宏富, 刘鑫, 王彦雯, 张蕙祺, 黄甫瑞 . 播种深度对谷子出苗率及干物质积累的影响. 农学学报, 2017,7(9):6-13.
Wang Z H, Wang H F, Liu X, Wang Y W, Zhang H Q, Huang F R . Effects of sowing depth on seeding emergence rate and dry matter accumulation of millet. Chin J Agric, 2017,7(9):6-13 (in Chinese with English abstract).
[43] Yagmur M, Kaydan D . The effects of different sowing depth on grain yield and some grain yield components in wheat (Triticum aestivum L.) cultivars under dryland conditions. Afr J Biotechnol, 2010,8:196-201.
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[8] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[9] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[10] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[11] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[12] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!