作物学报 ›› 2020, Vol. 46 ›› Issue (12): 1819-1830.doi: 10.3724/SP.J.1006.2020.02027
• 综述 • 下一篇
Yan-Sheng LI1,2,*(), Jian JIN2,*(), Xiao-Bing LIU2
摘要:
全球大气二氧化碳(CO2)浓度不断升高对农业生产带来巨大影响。二氧化碳是作物光合作用的底物, 其浓度的升高理论上有利于作物光合作用能力的提高, 从而促进作物生物量和产量的形成。但已有研究表明, 大气CO2浓度升高对作物产量的促进作用小于预期, 同时还存在使作物营养品质变劣的风险, 相关机制尚不清楚。为此, 本文从植物(作物)叶片对CO2的吸收和固定生理基础入手, 综述了不同类型作物关键光合生理指标如: 净光合速率、叶片胞间CO2浓度、Rubisco酶最大羧化速率及Rubp再生速率等对大气CO2浓度的响应差异。以作物整株水平碳-氮代谢平衡为基础, 总结了解释光合适应现象的2种主要假说,即“源-库”调节机制和N素抑制机制。综述了大气CO2浓度升高对不同作物籽粒蛋白质、脂肪、矿质元素和维生素等关键营养指标浓度的影响。分析了未来大气CO2浓度和温度升高的交互作用对作物生产所带来的潜在影响。展望了本领域未来需要关注的主要研究方向。该综述可以为准确评估未来气候条件下作物产量和品质变化, 最大发挥大气CO2浓度升高所带来的“肥料效应”, 减缓气候变化对作物生产带来的不利影响提供理论参考。
[1] | IPCC. Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013. pp 95-123. |
[2] | Still C J, Berry J A, Collatz G J, DeFries R S . Global distribution of C3 and C4 vegetation: carbon cycle implications. Global Biogeochem Cycles, 2003,17:1006. |
[3] |
Jablonski L M, Wang X Z, Curtis P S . Plant reproduction under elevated CO2 conditions: a meta-analysis of reports on 79 crop and wild species. New Phytol, 2002,156:9-26.
doi: 10.1046/j.1469-8137.2002.00494.x |
[4] |
Rogers A, Ainsworth E A, Leakey A D B . Will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes? Plant Physiol, 2009,151:1009-1016.
doi: 10.1104/pp.109.144113 pmid: 19755541 |
[5] | 韩雪, 林而达, 郝兴宇, 马占云, 王贺然 . FACE条件下冬小麦的光合适应. 中国农业气象, 2009,30:481-485. |
Han X, Lin E D, Hao X Y, Ma Z Y, Wang H R . Photosynthetic acclimation of winter wheat under free air CO2 enrichment (FACE). Chin J Agrometol, 2009,30:481-485 (in Chinese with English abstract). | |
[6] |
Stitt M, Schulze D . Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology. Plant Cell Environ, 1994,17:465-487.
doi: 10.1111/pce.1994.17.issue-5 |
[7] |
Eisenhut M, Ruth W, Haimovich M, Bauwe H, Kaplan A, Hagemann M . The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants. Proc Natl Acad Sci USA, 2008,105:17199-17204.
doi: 10.1073/pnas.0807043105 pmid: 18957552 |
[8] | Brown M E, Funk C C. Food Security and Climate Change. Chichester: Wiley-Blackwell Press, 2018. pp 51-69. |
[9] |
Farquhar G D, von Caemmerer S V, Berry J A . A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 1980,149:78-90.
doi: 10.1007/BF00386231 pmid: 24306196 |
[10] |
Zhao D L, Reddy K R, Kakani V G, Mohammed A R, Read J J, Gao W . Leaf and canopy photosynthetic characteristics of cotton (Gossypium hirsutum) under elevated CO2 concentration and UV-B radiation. J Plant Physiol, 2004,161:581-590.
doi: 10.1078/0176-1617-01229 pmid: 15202715 |
[11] |
Long S P, Bernacchi C J . Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot, 2003,54:2393-2401.
doi: 10.1093/jxb/erg262 pmid: 14512377 |
[12] |
Liu B B, Li M, Li Q M, Cui Q Q, Zhang W D, Ai X Z, Bi H G . Combined effects of elevated CO2 concentration and drought stress on photosynthetic performance and leaf structure of cucumber (Cucumis sativus L.) seedlings. Photosynthetica, 2018,56:942-952.
doi: 10.1007/s11099-017-0753-9 |
[13] |
Chen G Y, Yong Z H, Liao Y, Zhang D Y, Chen Y, Zhang H B, Chen J, Zhu J G, Xu D Q . Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose- 1,5-bisphosphate carboxylation limitation and ribulose- 1,5-bisphosphate regeneration limitation. Plant Cell Physiol, 2005,46:1036-1045.
doi: 10.1093/pcp/pci113 pmid: 15840641 |
[14] |
Ainsworth E A, Rogers A . The response of photosynthesis and stomatal conductance to rising CO2: mechanisms and environmental interactions. Plant Cell Environ, 2007,30:258-270.
doi: 10.1111/j.1365-3040.2007.01641.x pmid: 17263773 |
[15] | Biggins J. Progress in Photosynthesis Research. Berlin: Springer Science & Business Press, 1987. pp 221-224. |
[16] |
Mott K A . Do stomata respond to CO2 concentrations other than intercellular? Plant Physiol, 1988,86:200-203.
doi: 10.1104/pp.86.1.200 pmid: 16665866 |
[17] |
Leakey A D B, Ainsworth E A, Bernacchi C J, Rogers A, Long S P, Ort D R . Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot, 2009,60:2859-2876.
doi: 10.1093/jxb/erp096 pmid: 19401412 |
[18] |
Medlyn B E, Barton C V M, Broadmeadow M S J, Ceulemans R, De Angelis P, Forstreuter M, Freeman M, Jackson S B, Kellomaki S, Laitat E, Rey A, Roberntz P, Sigurdsson B D, Strassemeyer J, Wang K, Curtis P S, Jarvis P G . Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol, 2001,149:247-264.
doi: 10.1046/j.1469-8137.2001.00028.x |
[19] |
Ainsworth E A, Rogers A, Blum H, Nosberger J, Long S P . Variation in acclimation of photosynthesis in Trifolium repens after eight years of exposure to Free Air CO2 Enrichment (FACE). J Exp Bot, 2003,54:2769-2774.
doi: 10.1093/jxb/erg309 pmid: 14585828 |
[20] |
Sanz-Saez A, Koester R P, Rosenthal D M, Montes C M, Ort D R, Ainsworth E A . Leaf and canopy scale drivers of genotypic variation in soybean response to elevated carbon dioxide concentration. Glob Change Biol, 2017,23:3908-3920.
doi: 10.1111/gcb.2017.23.issue-9 |
[21] |
Thomey M L, Slattery R A, Köhler I H, Bernacchi C J, Ort D R . Yield response of field-grown soybean exposed to heat waves under current and elevated [CO2]. Glob Change Biol, 2019,25:4352-4368.
doi: 10.1111/gcb.v25.12 |
[22] | Sage R F, Monson R K. C4 Plant Biology. Amsterdam: Elsevier Press, 1999. p 87. |
[23] |
Morgan J A, LeCain D R, Read J J, Hunt H W, Knight W G . Photosynthetic pathway and ontogeny affect water relations and the impact of CO2 on Bouteloua gracilis (C4) and Pascopyrum smithii (C3). Oecologia, 1998,114:483-493.
doi: 10.1007/s004420050472 pmid: 28307897 |
[24] |
Seneweera S P, Ghannoum O, Conroy J . High vapour pressure deficit and low soil water availability enhance shoot growth responses of a C4 grass (Panicum coloratum cv. Bambatsi) to CO2 enrichment. Funct Plant Biol, 1998,25:287-292.
doi: 10.1071/PP97054 |
[25] |
Cunniff J, Jones G, Charles M, Osborne C P . Yield responses of wild C3 and C4 crop progenitors to subambient CO2: a test for the role of CO2 limitation in the origin of agriculture. Glob Change Biol, 2017,23:380-393.
doi: 10.1111/gcb.13473 |
[26] |
Samarakoon A, Gifford R . Elevated CO2 effects on water use and growth of maize in wet and drying soil. Funct Plant Biol, 1996,23:53-62.
doi: 10.1071/PP9960053 |
[27] |
Ghannoum O, Caemmerer S V, Ziska L H, Conroy J P . The growth response of C4 plants to rising atmospheric CO2 partial pressure: a reassessment. Plant Cell Environ, 2000,23:931-942.
doi: 10.1046/j.1365-3040.2000.00609.x |
[28] |
Maroco J P, Edwards G E, Ku M S B . Photosynthetic acclimation of maize to growth under elevated levels of carbon dioxide. Planta, 1999,210:115-125.
doi: 10.1007/s004250050660 pmid: 10592039 |
[29] |
Leakey A D, Uribelarrea M, Ainsworth E A, Naidu S L, Rogers A, Ort D R, Long S P . Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiol, 2006,140:779-790.
doi: 10.1104/pp.105.073957 pmid: 16407441 |
[30] |
Zhu C, Ziska L, Zhu J, Zeng Q, Xie Z, Tang H, Jia X, Hasegawa T . The temporal and species dynamics of photosynthetic acclimation in flag leaves of rice (Oryza sativa) and wheat(Triticum aestivum) under elevated carbon dioxide. Physiol Plant, 2012,145:395-405.
doi: 10.1111/j.1399-3054.2012.01581.x pmid: 22268610 |
[31] |
Gamage D, Thompson M, Sutherland M, Hirotsu N, Makino A, Seneweera S . New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide concentrations. Plant Cell Environ, 2018,41:1233-1246.
doi: 10.1111/pce.13206 pmid: 29611206 |
[32] |
Arp W . Effects of source-sink relations on photosynthetic acclimation to elevated CO2. Plant Cell Environ, 1991,14:869-875.
doi: 10.1111/pce.1991.14.issue-8 |
[33] |
Smart D, Chatterton N, Bugbee B . The influence of elevated CO2 on non-structural carbohydrate distribution and fructan accumulation in wheat canopies. Plant Cell Environ, 1994,17:435-442.
doi: 10.1111/j.1365-3040.1994.tb00312.x pmid: 11537974 |
[34] |
Moore B, Cheng S H, Sims D, Seemann J . The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2. Plant Cell Environ, 1999,22:567-582.
doi: 10.1046/j.1365-3040.1999.00432.x |
[35] |
Ludewig F, Sonnewald U . High CO2-mediated down-regulation of photosynthetic gene transcripts is caused by accelerated leaf senescence rather than sugar accumulation. FEBS Lett, 2000,479:19-24.
doi: 10.1016/s0014-5793(00)01873-1 pmid: 10940381 |
[36] |
Zhu C, Zhu J, Zeng Q, Liu G, Xie Z, Tang H, Cao J, Zhao X . Elevated CO2 accelerates flag leaf senescence in wheat due to ear photosynthesis which causes greater ear nitrogen sink capacity and ear carbon sink limitation. Funct Plant Biol, 2009,36:291-299.
doi: 10.1071/FP08269 pmid: 32688647 |
[37] | Fabre D, Dingkuhn M, Yin X, Clément-Vidal A, Roques S, Soutiras A, Luquet D . Genotypic variation in morphological source and sink traits affects the response of rice photosynthesis and growth to elevated atmospheric CO2. Biol Rxiv, 2019: 694307. |
[38] |
Bernacchi C J, Calfapietra C, Davey P A, Wittig V E , Scarascia- Mugnozza G E, Raines C A, Long S P. Photosynthesis and stomatal conductance responses of poplars to free-air CO2 enrichment (PopFACE) during the first growth cycle and immediately following coppice. New Phytol, 2003,159:609-621.
doi: 10.1046/j.1469-8137.2003.00850.x |
[39] |
Davey P, Olcer H, Zakhleniuk O, Bernacchi C, Calfapietra C, Long S P, Raines C . Can fast-growing plantation trees escape biochemical down-regulation of photosynthesis when grown throughout their complete production cycle in the open air under elevated carbon dioxide? Plant Cell Environ, 2006,29:1235-1244.
doi: 10.1111/j.1365-3040.2006.01503.x pmid: 17080946 |
[40] |
Paul M J, Foyer C H . Sink regulation of photosynthesis. J Exp Bot, 2001,52:1383-1400.
doi: 10.1093/jexbot/52.360.1383 pmid: 11457898 |
[41] |
Aranjuelo I, Pardo A, Biel C, Savé R, Azcón-Bieto J, Nogués S . Leaf carbon management in slow-growing plants exposed to elevated CO2. Glob Change Biol, 2009,15:97-109.
doi: 10.1111/gcb.2009.15.issue-1 |
[42] |
Ainsworth E A, Rogers A, Nelson R, Long S P . Testing the “source-sink” hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine max. Agric For Meteorol, 2004,122:85-94.
doi: 10.1016/j.agrformet.2003.09.002 |
[43] |
Gordon A J, Minchin F R, James C L, Komina O . Sucrose synthase in legume nodules is essential for nitrogen fixation. Plant Physiol, 1999,120:867-878.
doi: 10.1104/pp.120.3.867 pmid: 10398723 |
[44] |
Wang T, Hedley C . Seed development in peas: knowing your three ‘r’s’ (or four, or five). Seed Sci Res, 1991,1:3-14.
doi: 10.1017/S096025850000057X |
[45] | 邸伟 . 大豆根瘤固氮酶活性与固氮量的研究. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2010. |
Di W . Study on Nodule Nitrogenous Activities and Amount of Nitrogen Fixation of Soybean. MS Thesis of Northeast Agricultral University, Harbin, Heilongjiang, China, 2010 (in Chinese with English abstract). | |
[46] |
Socias F X, Medrano H, Sharkey T D . Feedback limitation of photosynthesis of Phaseolus vulgaris L. grown in elevated CO2. Plant Cell Environ, 1993,16:81-86.
doi: 10.1111/pce.1993.16.issue-1 |
[47] |
Cen Y P, Sage R F . The regulation of Rubisco activity in response to variation in temperature and atmospheric CO2 partial pressure in sweet potato. Plant Physiol, 2005,139:979-990.
doi: 10.1104/pp.105.066233 pmid: 16183840 |
[48] |
Ellis R J . The most abundant protein in the world. Trends Biochem Sci, 1979,4:241-244.
doi: 10.1016/0968-0004(79)90212-3 |
[49] |
Spreitzer R J, Salvucci M E . Rubisco: Structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol, 2002,53:449-475.
doi: 10.1146/annurev.arplant.53.100301.135233 pmid: 12221984 |
[50] |
Drake B G, Gonzalez M A, Long S P . More efficient plants: a consequence of rising atmospheric CO2? Annu Rev Plant Physiol Plant Mol Biol, 1997,48:609-639.
doi: 10.1146/annurev.arplant.48.1.609 pmid: 15012276 |
[51] |
Vu J C V, Allen L H, Boote K J, Bowes G . Effects of elevated CO2 and temperature on photosynthesis and rubisco in rice and soybean. Plant Cell Environ, 1997,20:68-76.
doi: 10.1046/j.1365-3040.1997.d01-10.x |
[52] |
Rogers A, Fischer B U, Bryant J, Frehner M, Blum H, Raines C A, Long S P . Acclimation of photosynthesis to elevated CO2 under low-nitrogen nutrition is affected by the capacity for assimilate utilization. Perennial ryegrass under free-air CO2 enrichment. Plant Physiol, 1998,118:683-689.
doi: 10.1104/pp.118.2.683 pmid: 9765554 |
[53] |
Yang L X, Wang Y L, Dong G C, Gu H, Huang J Y, Zhu J G, Yang H J, Liu G, Han Y . The impact of free-air CO2 enrichment (FACE) and nitrogen supply on grain quality of rice. Field Crops Res, 2007,102:128-140.
doi: 10.1016/j.fcr.2007.03.006 |
[54] |
Zeng Q, Liu B A, Gilna B, Zhang Y L, Zhu C W, Ma H L, Pang J, Chen G P, Zhu J G . Elevated CO2 effects on nutrient competition between a C3 crop ( Oryza sativa L.) and a C4 weed(Echinochloa crusgalli L.). Nutr Cycl Agroecosyst, 2011,89:93-104.
doi: 10.1007/s10705-010-9379-z |
[55] |
Uddling J, Broberg M C, Feng Z Z, Pleijel F . Crop quality under rising atmospheric CO2. Curr Opin Plant Biol, 2018,45:262-267.
doi: 10.1016/j.pbi.2018.06.001 pmid: 29958824 |
[56] |
Dong J L, Li X, Chu W Y, Duan Z Q . High nitrate supply promotes nitrate assimilation and alleviates photosynthetic acclimation of cucumber plants under elevated CO2. Sci Hortic, 2017,218:275-283.
doi: 10.1016/j.scienta.2016.11.026 |
[57] |
Long S P, Ainsworth E A, Leakey A D, Nösberger J, Ort D R . Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science, 2006,312:1918-1921.
doi: 10.1126/science.1114722 pmid: 16809532 |
[58] |
Taub D R, Wang X . Why are nitrogen concentrations in plant tissues lower under elevated CO2? A critical examination of the hypotheses. J Integr Plant Biol, 2008,50:1365-1374.
doi: 10.1111/j.1744-7909.2008.00754.x |
[59] |
Li Y S, Yu Z H, Liu X B, Mathesius U, Wang G H, Tang C X, Wu J J, Liu J D, Zhang S Q, Jin J . Elevated CO2 increases nitrogen fixation at the reproductive phase contributing to various yield responses of soybean cultivars. Front Plant Sci, 2017,8:1546.
doi: 10.3389/fpls.2017.01546 pmid: 28959266 |
[60] |
Li Y S, Yu Z H, Yang S C, Jin J, Wang G H, Liu C K, Herbert S J, Liu X B . Soybean intraspecific genetic variation in response to elevated CO2. Arch Agron Soil Sci, 2019,65:1733-1744.
doi: 10.1080/03650340.2019.1575958 |
[61] |
Feng Z, Rütting T, Pleijel H, Wallin G, Reich P B, Kammann C I, Newton P C, Kobayashi K, Luo Y, Uddling J . Constraints to nitrogen acquisition of terrestrial plants under elevated CO2. Glob Change Biol, 2015,21:3152-3168.
doi: 10.1111/gcb.12938 |
[62] |
Conroy J, Hocking P . Nitrogen nutrition of C3 plants at elevated atmospheric CO2 concentrations. Physiol Plant, 1993,89:570-576.
doi: 10.1111/ppl.1993.89.issue-3 |
[63] |
Field C B, Jackson R B, Mooney H A . Stomatal responses to increased CO2: implications from the plant to the global scale. Plant Cell Environ, 1995,18:1214-1225.
doi: 10.1111/pce.1995.18.issue-10 |
[64] |
Norby R J, Wullschleger S D, Gunderson C A, Johnson D W, Ceulemans R . Tree responses to rising CO2 in field experiments: implications for the future forest. Plant Cell Environ, 1999,22:683-714.
doi: 10.1046/j.1365-3040.1999.00391.x |
[65] |
Bunce J A . Direct and acclimatory responses of stomatal conductance to elevated carbon dioxide in four herbaceous crop species in the field. Glob Change Biol, 2001,7:323-331.
doi: 10.1046/j.1365-2486.2001.00406.x |
[66] |
Stitt M, Krapp A . The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environ, 1999,22:583-621.
doi: 10.1046/j.1365-3040.1999.00386.x |
[67] |
BassiriRad H, Gutschick V P, Lussenhop J . Root system adjustments: regulation of plant nutrient uptake and growth responses to elevated CO2. Oecologia, 2001,126:305-320.
doi: 10.1007/s004420000524 pmid: 28547443 |
[68] | Hawkesford M J, Barraclough P B. The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops. Chichester: Wiley-Blackwell Press, 2011. pp 5-19. |
[69] |
Tanner W, Beevers H . Transpiration, a prerequisite for long-distance transport of minerals in plants? Proc Natl Acad Sci USA, 2001,98:9443-9447.
doi: 10.1073/pnas.161279898 pmid: 11481499 |
[70] |
Wu K, Chen D, Tu C, Qiu Y, Burkey K O, Reberg-Horton S C, Peng S, Hu S . CO2-induced alterations in plant nitrate utilization and root exudation stimulate N2O emissions. Soil Biol Biochem, 2017,106:9-17.
doi: 10.1016/j.soilbio.2016.11.018 |
[71] |
Luo Y, Su B, Currie W S, Dukes J S, Finzi A, Hartwig U, Hungate B, McMurtrie R E, Oren R, Parton W J . Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience, 2004,54:731-739.
doi: 10.1641/0006-3568(2004)054[0731:PNLOER]2.0.CO;2 |
[72] |
Cheng L, Booker F L, Tu C, Burkey K O, Zhou L, Shew H D, Rufty T W, Hu S . Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science, 2012,337:1084-1087.
doi: 10.1126/science.1224304 pmid: 22936776 |
[73] |
Niu Y, Chai R, Dong H, Wang H, Tang C, Zhang Y . Effect of elevated CO2 on phosphorus nutrition of phosphate-deficient Arabidopsis thaliana(L.) Heynh under different nitrogen forms. J Exp Bot, 2013,64:355-367.
doi: 10.1093/jxb/ers341 pmid: 23183255 |
[74] |
Loladze I . Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. eLife, 2014,3.
doi: 10.7554/eLife.03606 pmid: 25535795 |
[75] |
Robinson E A, Ryan G D, Newman J A . A meta-analytical review of the effects of elevated CO2 on plant-arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytol, 2012,194:321-336.
doi: 10.1111/j.1469-8137.2012.04074.x |
[76] |
Bates P D, Stymne S, Ohlrogge J . Biochemical pathways in seed oil synthesis. Curr Opin Plant Biol, 2013,16:358-364.
doi: 10.1016/j.pbi.2013.02.015 pmid: 23529069 |
[77] |
Li Y S, Yu Z H, Jin J, Zhang Q Y, Wang G H, Liu C K, Wu J J, Wang C, Liu X B . Impact of elevated CO2 on seed quality of soybean at the fresh edible and mature stages. Front Plant Sci, 2018,9:1413.
doi: 10.3389/fpls.2018.01413 pmid: 30386351 |
[78] |
Clemente T E, Cahoon E B . Soybean oil: genetic approaches for modification of functionality and total content. Plant Physiol, 2009,151:1030-1040.
doi: 10.1104/pp.109.146282 pmid: 19783644 |
[79] |
Demorest Z L, Coffman A, Baltes N J, Stoddard T J, Clasen B M, Luo S, Retterath A, Yabandith A, Gamo M E, Bissen J, Mathis L, Voytas D F, Zhang F . Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil. BMC Plant Biol, 2016,16:225.
doi: 10.1186/s12870-016-0906-1 pmid: 27733139 |
[80] | 蒋跃林, 张庆国, 岳伟, 姚玉刚, 王公明 . 大气CO2浓度升高对大豆生长和产量的影响. 中国农学通报, 2005,21:355-355. |
Jiang Y L, Zhang Q G, Yue W, Yao G Y, Wang G M . Effects of elevated atmospheric CO2 concentration on growth and yield of soybean. Chin Agric Sci Bull, 2005,21:355-355 (in Chinese with English abstract). | |
[81] |
Högy P, Franzaring J, Schwadorf K, Breuer J, Schuetze W, Fangmeier A . Effects of free-air CO2 enrichment on energy traits and seed quality of oilseed rape. Agric Ecosyst Environ, 2010,139:239-244.
doi: 10.1016/j.agee.2010.08.009 |
[82] |
Myers S S, Zanobetti A, Kloog I, Huybers P, Leakey A D, Bloom A J, Carlisle E, Dietterich L H, Fitzgerald G, Hasegawa T, Holbrook N M, Nelson R L, Ottman M J, Raboy V, Sakai H, Sartor K A, Schwartz J, Seneweera S, Tausz M, Usui Y . Increasing CO2 threatens human nutrition. Nature, 2014,510:139-142.
doi: 10.1038/nature13179 |
[83] |
Soares J, Deuchande T, Valente L M, Pintado M, Vasconcelos M W . Growth and nutritional responses of bean and soybean genotypes to elevated CO2 in a controlled environment. Plants, 2019,8:465.
doi: 10.3390/plants8110465 |
[84] |
Li Y S, Yu Z H, Yang S C, Wang G H, Liu X B, Wang C Y, Xie Z H, Jin J . Impact of elevated CO2 on C : N : P ratio among soybean cultivars. Sci Total Environ, 2019,694:133784.
doi: 10.1016/j.scitotenv.2019.133784 pmid: 31756809 |
[85] |
Swaminathan S, Vaz M, Kurpad A V . Protein intakes in India. Br J Nutr, 2012,108:S50-S58.
doi: 10.1017/S0007114512002413 pmid: 23107548 |
[86] |
Pratelli R, Pilot G . Regulation of amino acid metabolic enzymes and transporters in plants. J Exp Bot, 2014,65:5535-5556.
doi: 10.1093/jxb/eru320 |
[87] |
Takahashi M, Uematsu Y, Kashiwaba K, Yagasaki K, Hajika M, Matsunaga R, Komatsu K, Ishimoto M . Accumulation of high levels of free amino acids in soybean seeds through integration of mutations conferring seed protein deficiency. Planta, 2003,217:577-586.
doi: 10.1007/s00425-003-1026-3 pmid: 12684787 |
[88] |
Beidler K V, Taylor B N, Strand A E, Cooper E R, Schonholz M, Pritchard S G . Changes in root architecture under elevated concentrations of CO2 and nitrogen reflect alternate soil exploration strategies. New Phytol, 2015,205:1153-1163.
doi: 10.1111/nph.13123 pmid: 25348775 |
[89] | World Health Organization. The World Health Report 2002: Reducing Risks, Promoting Healthy Life. France: World Health Organization, 2002. [2020-04-26]. https://www.who.int/whr/2002/en/. |
[90] |
Brown K H, Wuehler S E, Peerson J M . The importance of zinc in human nutrition and estimation of the global prevalence of zinc deficiency. Food Nutr Bull, 2001,22:113-125.
doi: 10.1177/156482650102200201 |
[91] |
Zhu C, Kobayashi K, Loladze I, Zhu J, Jiang Q, Xu X, Liu G, Seneweera S, Ebi K L, Drewnowski A . Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Sci Adv, 2018, 4: eaaq1012.
doi: 10.1126/sciadv.aaq1012 pmid: 29806023 |
[92] | Saugier B. Carbon Dioxide and Environmental Stress. Amsterdam: Elsevier Press, 1999. pp 215-244. |
[93] |
McDonald E P, Erickson J E, Kruger E L . Can decreased transpiration limit plant nitrogen acquisition in elevated CO2? Funct Plant Biol, 2002,29:1115-1120.
doi: 10.1071/FP02007 pmid: 32689563 |
[94] |
Pérez-López U, Miranda-Apodaca J, Mena-Petite A, Muñoz- Rueda A . Responses of nutrient dynamics in barley seedlings to the interaction of salinity and carbon dioxide enrichment. Environ Exp Bot, 2014,99:86-99.
doi: 10.1016/j.envexpbot.2013.11.004 |
[95] | IPCC. Global Warming of 1.5°C: an IPCC Special Report, IPCC Secretariat. Cambridge: Cambridge University Press, 2018. pp 175-311. |
[96] |
Kim H Y, Ko J, Kang S, Tenhunen J . Impacts of climate change on paddy rice yield in a temperate climate. Glob Change Biol, 2013,19:548-562.
doi: 10.1111/gcb.2012.19.issue-2 |
[97] |
Van Oort P A, Zwart S J . Impacts of climate change on rice production in Africa and causes of simulated yield changes. Glob Change Biol, 2018,24:1029-1045.
doi: 10.1111/gcb.2018.24.issue-3 |
[98] |
Wang J, Liu X, Zhang X, Smith P, Li L, Filley T R, Cheng K, Shen M, He Y, Pan G . Size and variability of crop productivity both impacted by CO2 enrichment and warming—a case study of 4 year field experiment in a Chinese paddy. Agric Ecosyst Environ, 2016,221:40-49.
doi: 10.1016/j.agee.2016.01.028 |
[99] |
Ainsworth E A, Ort D R . How do we improve crop production in a warming world? Plant Physiol, 2010,154:526-530.
doi: 10.1104/pp.110.161349 pmid: 20921178 |
[100] |
Supit I, Van Diepen C, De Wit A, Kabat P, Baruth B, Ludwig F . Recent changes in the climatic yield potential of various crops in Europe. Agric Sys, 2010,103:683-694.
doi: 10.1016/j.agsy.2010.08.009 |
[101] |
Bassu S, Brisson N, Durand J L, Boote K, Lizaso J, Jones J W, Rosenzweig C, Ruane A C, Adam M, Baron C . How do various maize crop models vary in their responses to climate change factors? Glob Change Biol, 2014,20:2301-2320.
doi: 10.1111/gcb.2014.20.issue-7 |
[102] |
Sultan B, Gaetani M . Agriculture in West Africa in the twenty-first century: climate change and impacts scenarios, and potential for adaptation. Front Plant Sci, 2016,7:1262.
doi: 10.3389/fpls.2016.01262 pmid: 27625660 |
[103] |
Lobell D B, Field C B . Global scale climate-crop yield relationships and the impacts of recent warming. Environ Res Lett, 2007,2:014002.
doi: 10.1088/1748-9326/2/1/014002 |
[104] |
Kucharik C J, Serbin S P . Impacts of recent climate change on Wisconsin corn and soybean yield trends. Environ Res Lett, 2008,3:034003.
doi: 10.1088/1748-9326/3/3/034003 |
[105] |
Hatfield J L, Boote K J, Kimball B, Ziska L, Izaurralde R C, Ort D, Thomson A M, Wolfe D . Climate impacts on agriculture: implications for crop production. Agron J, 2011,103:351-370.
doi: 10.2134/agronj2010.0303 |
[106] |
Ruiz-Vera U M, Siebers M, Gray S B, Drag D W, Rosenthal D M, Kimball B A, Ort D R, Bernacchi C J . Global warming can negate the expected CO2 stimulation in photosynthesis and productivity for soybean grown in the midwestern United States. Plant Physiol, 2013,162:410-423.
doi: 10.1104/pp.112.211938 |
[107] |
Schauberger B, Archontoulis S, Arneth A, Balkovic J, Ciais P, Deryng D, Elliott J, Folberth C, Khabarov N, Müller C, Thomas A M, Rolinski S, Schaphoff S, Schmid E, Wang X H, Schlenker W, Frieler K . Consistent negative response of US crops to high temperatures in observations and crop models. Nat Commun, 2017,8:1-9.
doi: 10.1038/s41467-016-0009-6 pmid: 28232747 |
[108] |
Frenck G, van der Linden L, Mikkelsen T N, Brix H, Jørgensen R B . Increased [CO2] does not compensate for negative effects on yield caused by higher temperature and [O3] in Brassica napus L. Eur J Agron, 2011,35:127-134.
doi: 10.1016/j.eja.2011.05.004 |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[4] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[5] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[6] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[7] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[8] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[9] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[10] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[11] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[12] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[13] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[14] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[15] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
|