欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (4): 532-543.doi: 10.3724/SP.J.1006.2020.93040

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米HD-ZIP I亚家族基因鉴定及表达分析

梁思维1,姜昊梁1,翟立红2,万小荣1,李小琴1,蒋锋1,*(),孙伟1,*()   

  1. 1 仲恺农业工程学院农业与生物学院, 广东广州 510225
    2 湖北文理学院医学院, 湖北襄阳 441053
  • 收稿日期:2019-07-13 接受日期:2019-12-26 出版日期:2020-04-12 网络出版日期:2020-01-15
  • 通讯作者: 蒋锋,孙伟
  • 作者简介:E-mail: hellosiwei@163.com, Tel: 020-89003026
  • 基金资助:
    本研究由国家自然科学基金项目(31901565);广东省重点领域研发计划项目(2018B020202013);广东省科学技术厅项目资助(粤科产学研字[2016]176号)

Genome-wide identification and expression analysis of HD-ZIP I subfamily genes in maize

LIANG Si-Wei1,JIANG Hao-Liang1,ZHAI Li-Hong2,WAN Xiao-Rong1,LI Xiao-Qin1,JIANG Feng1,*(),SUN Wei1,*()   

  1. 1 College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China
    2 Medical College, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China
  • Received:2019-07-13 Accepted:2019-12-26 Published:2020-04-12 Published online:2020-01-15
  • Contact: Feng JIANG,Wei SUN
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31901565);the National Key Research and Development Program of Guangdong Province(2018B020202013);the Program of the Science and Technology Bureau of Guangdong Province(粤科产学研字[2016]176号)

摘要:

转录因子是植物响应逆境胁迫的重要调节因子, 在其整个生长发育过程中发挥着重要的作用。HD-ZIP家族蛋白是植物中特有的一大类转录因子, 包含4个亚家族(HD-ZIP I~IV), 其中HD-ZIP I亚家族成员主要参与干旱、渗透压等极端环境和ABA及乙烯等激素处理的响应过程。本文采用隐马可夫模型(HMM)在玉米参考基因组中鉴定到17个HD-ZIP I亚家族成员, 这些基因不均匀分布于玉米6条染色体上, 与水稻的亲缘关系要近于拟南芥。玉米HD- ZIP I 亚家族基因在玉米7种组织中表现出多种表达模式, 具有明显的组织表达特异性。另外, HD-ZIP I亚家族基因对高盐、淹水及冷害等不同的逆境胁迫处理呈现出不同的响应模式及响应程度差异。5种不同激素处理后, 玉米HD-ZIP I亚家族基因也表现出复杂的响应模式。这些结果为进一步解析玉米HD-ZIP I亚家族基因的生物学功能和作用机理提供了一定的参考价值。

关键词: HD-ZIP I 亚家族, 逆境胁迫, 表达分析, 玉米

Abstract:

Transcription factors (TFs) are indispensable regulators of plant response to abiotic stress and play an important role in the whole growth and development process. HD-ZIP proteins constitute a large family of transcription factors that are found only in plants and are divided into four subfamilies (HD-ZIP I-IV). HD-ZIP I subfamily genes mainly participate in response to extreme environments such as drought and osmotic stress and treatments of ABA and ethylene. Here, we identified 17 HD-ZIP I subfamily genes in the maize genome using the hidden Markov model (HMM), which distributed non-uniformly on six chromosomes of maize and were more closely related to rice than to Arabidopsis. Furthermore, these HD-ZIP I subfamily genes exhibited multiple expression patterns in seven tissues, showing strong tissues-specific expression. Moreover, maize HD-ZIP I subfamily genes showed different response patterns and degrees to different stresses, such as high salinity, waterlogging and cold stress. In addition, maize HD-ZIP I subfamily genes also showed a complex response pattern under treatment of five different hormones. These results provide valuable reference information for dissecting function and molecular mechanism of HD-ZIP I subfamily genes in maize.

Key words: HD-ZIP I subfamily, abiotic stress, expression analysis, maize

附表1

本文中所用引物序列信息"

基因
Gene
基因编号
Gene accession number
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
ZmActin1 GRMZM2G126010 GGCCAACTGCCGAAGCCAT GAGAGGGGGCCTCGGTCAGCA
ZmHB5 GRMZM2G132367 CTCGTCTCCCCCCGTTTTC CAGGCCTTGTACGAGTCGAAT
ZmHB7 GRMZM2G122076 CCAGGTAGCTGTTTGGTTCCA GGCGAGTGCGTCGTAAGC
ZmHB12 AC233899.1_FGP004 CGGCTCCTGCTTTTCCAA TCATCTGTGACCGGCACTTG
ZmHB22 GRMZM2G178741 GAGGGCCCCATGGACCA GTGCAGGAGTTGGTCCATACC
ZmHB34 GRMZM2G002915 AACTGAGAAACTGCAAACGAAAGA CAGAGCTTGTCTCCTTCCAAGAC
ZmHB41 GRMZM2G117164 GGCCCAGTTCATGCACCA ACCTGCTCCTCCGTGAACC
ZmHB49 GRMZM2G097349 ACAACAAGAAGCTACAGGCAGAGA TCTCTGACGTTGAGGTTGATGAG
ZmHB54 GRMZM2G041127 GGAATGCGTGCGGAATG GCCGAACGCCATCATCTC
ZmHB66 GRMZM2G351330 CTGCTCCGCGCCAAGTT TCCCTCAGCCTCTCGCTTAG
ZmHB68 GRMZM2G005624 GTTCTCGACGGTGACGCA CTGTTGTAGGCGTACTCGGTCA
基因
Gene
基因编号
Gene accession number
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
ZmHB102 GRMZM2G139963 GATCATGAGCATCAAGAACAGCAT GCGAGGGGCATTGAGAAGA
ZmHB112 GRMZM2G003304 ATCCCTGTCGGCAACCATC ATGTCCAGTGCAACCGCAG
ZmHB115 GRMZM2G021339 GACCGATGCTTGGCCTTG AGCTGCTCGTCGTAGTACTCCTC
ZmHB120 GRMZM2G056600 GATGATGGTTACGGCGTGG GCACCTGCTCGGAGCTCA
ZmHB126 GRMZM2G034113 ACGGAGTGGATGATGCATGG GAACATGGACTCCAGCGACTT
ZmHB127 GRMZM2G119999 GCGTCGCCCTACCCTTACTC ACGTCAAGAAGGAGGTGAAACC
ZmHB128 GRMZM2G041462 CCCGGAGTGGATGATGGAG CGAACATGGACTCGAGAGACTT

表1

玉米HD-ZIP I 亚家族基因信息"

基因
Gene
基因编号
Gene accession
Bin 基因组位置
Genome location
(RefG.v3)
编码区
Coding
sequence (bp)
蛋白长度
Protein (aa)
外显子数目
Exon number
ZmHB5 GRMZM2G132367 1.02 19250088:19252388 981 326 3
ZmHB7 GRMZM2G122076 4.05 77636576:77641035 819 272 3
ZmHB12 AC233899.1_FGP004 9.07 149912584:149914098 1134 377 3
ZmHB22 GRMZM2G178741 9.07 151525953:151528343 1035 344 3
ZmHB34 GRMZM2G002915 2.06 178781917:178784182 852 283 3
ZmHB41 GRMZM2G117164 5.05 190526953:190528628 708 235 2
ZmHB49 GRMZM2G097349 1.08 243185151:243187447 1092 363 2
ZmHB54 GRMZM2G041127 2.07 188712314:188714917 825 274 3
ZmHB66 GRMZM2G351330 2.03 22220873:22222180 786 261 2
ZmHB68 GRMZM2G005624 1.02 23240104:23243489 720 239 3
ZmHB102 GRMZM2G139963 1.02 14957965:14960921 1035 344 3
ZmHB112 GRMZM2G003304 1.07 218768608:218773418 813 270 3
ZmHB115 GRMZM2G021339 4.06 165861785:165863994 1020 339 4
ZmHB120 GRMZM2G056600 7.03 129296234:129298384 786 261 3
ZmHB126 GRMZM2G034113 2.07 195705583:195707271 735 244 2
ZmHB127 GRMZM2G119999 1.05 139960481:139962631 885 294 3
ZmHB128 GRMZM2G041462 7.03 142432248:142434060 720 239 2

图1

玉米HD-ZIP I亚家族基因在染色体上的分布"

图2

玉米HD-ZIP I 亚家族基因及蛋白结构域分析 左图中直线表示内含子, 黑色长方形(宽)表示外显子, 黑色长方形(窄)表示非编码调控区(untranslated region, UTR); 右图中黑色圆角矩形表示HD结构域, 黑色椭圆形表示ZIP结构域。"

图3

玉米、水稻和拟南芥HD-ZIP I 亚家族蛋白的系统进化分析 所有HD-ZIP I亚家族基因的蛋白序列均来自于各自的基因组数据库: 玉米来自MaizeGDB (http://maizegdb.org/)、水稻来自TIGR (http://www.tigr.org/)和拟南芥来自TAIR (http://www.arabidopsis.org/)。利用ClustalX 2.0软件进行氨基酸序列的多重比对并用MEGA 5.1 软件构建Neighbor-Joining进化树(Bootstrap分析采用1000次重复)。黄色背景表示拟南芥基因, 绿色背景表示水稻基因, 紫色背景表示玉米基因。"

图4

玉米HD-ZIP I 亚家族基因表达谱 Leaves: 完全展开叶; Tassels: 幼嫩的雄穗; Ears: 幼嫩的雌穗: Seedling_shoots: 幼苗地上部分; Seedling_roots: 幼苗地下部分; Seeds_5DAP: 授粉后5 d的籽粒; Seeds_10DAP: 授粉后10 d的籽粒。方框内颜色代表HD-ZIP I亚家族基因表达数据的ln的对数值(ln (RPKM))。"

图5

逆境胁迫下玉米HD-ZIP I亚家族基因的表达模式 NT: 对照组; NaCl: 高盐处理; WL: 渍害胁迫; CT: 冷害胁迫; RCT: 冷害胁迫后恢复处理。纵坐标表示基因的相对表达量, 以对照组(NT)为1, 各基因的不同处理分别与对照组进行比较后获得的相对表达量, 差异显著性分析采用的是方差分析的方法, *P < 0.05、**P < 0.01、***P < 0.001。"

图6

玉米HD-ZIP I 亚家族基因对不同激素处理的响应 MOCK: 对照组; ABA: 脱落酸; Eth: 乙烯; GA3: 赤霉素; KT: 激动素; NAA: 萘乙酸。纵坐标表示基因的相对表达量, 以对照组(MOCK)为1, 差异显著性分析采用的是方差分析的方法, , *P < 0.05、**P < 0.01、***P < 0.001。"

[1] Verslues P E, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu J K . Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J, 2006,45:523-539.
[2] Yamaguchi-Shinozaki K, Shinozaki K . Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol, 2006,57:781-803.
[3] Zhu J K . Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002,53:247-273.
[4] Kim S, Kang J Y, Cho D I, Park J H, Kim S Y . ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J, 2004,40:75-87.
[5] Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K . Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol, 2007,143:1739-1751.
[6] Gao T, Wu Y, Zhang Y, Liu L, Ning Y, Wang D, Tong H, Chen S, Chu C, Xie Q . OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice. Plant Mol Biol, 2011,76:145-156.
[7] Hu T, Ye J, Tao P, Li H, Zhang J, Zhang Y, Ye Z . The tomato HD-Zip I transcription factor SlHZ24 modulates ascorbate accumulation through positive regulation of the D-mannose/L-galactose pathway. Plant J, 2016,85:16-29.
[8] Gong S, Ding Y, Hu S, Ding L, Chen Z, Zhu C . The role of HD-Zip class I transcription factors in plant response to abiotic stresses. Physiol Plant, 2019, doi: 10.1111/ppl.12965.
[9] Mukherjee K, Brocchieri L, Burglin T R . A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol Biol Evol, 2009,26:2775-2794.
[10] Agalou A, Purwantomo S, Overnas E, Johannesson H, Zhu X, Estiati A, de Kam R J, Engstrom P, Slamet-Loedin I H, Zhu Z, Wang M, Xiong L, Meijer A H, Ouwerkerk P B . A genome-wide survey of HD-Zip genes in rice and analysis of drought-responsive family members. Plant Mol Biol, 2008,66:87-103.
[11] Ariel F, Diet A, Verdenaud M, Gruber V, Frugier F, Chan R, Crespi M . Environmental regulation of lateral root emergence in Medicago truncatula requires the HD-Zip I transcription factor HB1. Plant Cell, 2010,22:2171-2183.
[12] Lin Z, Hong Y, Yin M, Li C, Zhang K, Grierson D . A tomato HD-Zip homeobox protein, LeHB-1, plays an important role in floral organogenesis and ripening. Plant J, 2008,55:301-310.
[13] Johannesson H, Wang Y, Hanson J, Engstrom P . The Arabidopsis thaliana homeobox gene ATHB5 is a potential regulator of abscisic acid responsiveness in developing seedlings. Plant Mol Biol, 2003,51:719-729.
[14] Manavella P A, Arce A L, Dezar C A, Bitton F, Renou J P, Crespi M, Chan R L . Cross-talk between ethylene and drought signalling pathways is mediated by the sunflower Hahb-4 transcription factor. Plant J, 2006,48:125-137.
[15] Li W, Dong J, Cao M, Gao X, Wang D, Liu B, Chen Q . Genome-wide identification and characterization of HD-ZIP genes in potato. Gene, 2019,697:103-117.
[16] Li Y, Xiong H, Cuo D, Wu X, Duan R . Genome-wide characterization and expression profiling of the relation of the HD-Zip gene family to abiotic stress in barley ( Hordeum vulgare L.). Plant Physiol Biochem, 2019,141:250-258.
[17] Yue H, Shu D, Wang M, Xing G, Zhan H, Du X, Song W, Nie X . Genome-wide identification and expression analysis of the HD-Zip gene family in wheat (Triticum aestivum L.). Genes(Basel), 2018,9(2), doi: 10.3390/genes9020070.
[18] Ariel F D, Manavella P A, Dezar C A, Chan R L . The true story of the HD-Zip family. Trends Plant Sci, 2007, 12:419-426.
[19] Henriksson E, Olsson A S, Johannesson H, Johansson H, Hanson J, Engstrom P, Soderman E . Homeodomain leucine zipper class I genes in Arabidopsis. Expression patterns and phylogenetic relationships. Plant Physiol, 2005,139:509-518.
[20] Romani F, Ribone P A, Capella M, Miguel V N, Chan R L . A matter of quantity: common features in the drought response of transgenic plants overexpressing HD-Zip I transcription factors. Plant Sci, 2016,251:139-154.
[21] Perotti M F, Ribone P A, Chan R L . Plant transcription factors from the homeodomain-leucine zipper family: I. Role in development and stress responses. IUBMB Life, 2017,69:280-289.
[22] Hu J, Chen G, Yin W, Cui B, Yu X, Lu Y, Hu Z . Silencing of SlHB2 improves drought, salt stress tolerance, and induces stress-related gene expression in tomato. J Plant Growth Regul, 2017,36:578-589.
[23] Ni Y, Wang X, Li D, Wu Y, Xu W, Li X . Novel cotton homeobox gene and its expression profiling in root development and in response to stresses and phytohormones. Acta Biochim Biophys Sin(Shanghai), 2008,40:78-84.
[24] Zhang S, Haider I, Kohlen W, Jiang L, Bouwmeester H, Meijer A H, Schluepmann H, Liu C M, Ouwerkerk P B . Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice. Plant Mol Biol, 2012,80:571-585.
[25] Dezar C A, Gago G M, Gonzalez D H, Chan R L . Hahb-4, a sunflower homeobox-leucine zipper gene, is a developmental regulator and confers drought tolerance to Arabidopsis thaliana plants. Transgenic Res, 2005,14:429-440.
[26] Cabello J V, Giacomelli J I, Gomez M C, Chan R L . The sunflower transcription factor HaHB11 confers tolerance to water deficit and salinity to transgenic Arabidopsis and alfalfa plants. J Biotechnol, 2017,257:35-46.
[27] Cabello J V, Arce A L, Chan R L . The homologous HD-Zip I transcription factors HaHB1 and AtHB13 confer cold tolerance via the induction of pathogenesis-related and glucanase proteins. Plant J, 2012,69:141-153.
[28] Capella M, Ribone P A, Arce A L, Chan R L . Arabidopsis thaliana HomeoBox 1 (AtHB1), a Homedomain-Leucine Zipper I (HD-Zip I) transcription factor, is regulated by PHYTOCHROME-INTERACTING FACTOR 1 to promote hypocotyl elongation. New Phytol, 2015,207:669-682.
[29] Parveen S, Pandey A, Jameel N, Chakraborty S, Chakraborty N . Transcriptional regulation of chickpea ferritin CaFer1 influences its role in iron homeostasis and stress response. J Plant Physiol, 2018,222:9-16.
[30] Ebrahimian-Motlagh S, Ribone P A, Thirumalaikumar V P, Allu A D, Chan R L, Mueller-Roeber B, Balazadeh S . JUNGBRUNNEN1 confers drought tolerance downstream of the HD-Zip I transcription factor AtHB13. Front Plant Sci, 2017,8:2118.
[31] Dai M, Hu Y, Ma Q, Zhao Y, Zhou D X . Functional analysis of rice HOMEOBOX4(Oshox4) gene reveals a negative function in gibberellin responses. Plant Mol Biol, 2008, 66:289-301.
[32] Zhou W, Malabanan P B, Abrigo E . OsHox4 regulates GA signaling by interacting with DELLA-like genes and GA oxidase genes in rice. Euphytica, 2015,201:97-107.
[33] Zhao Y, Ma Q, Jin X, Peng X, Liu J, Deng L, Yan H, Sheng L, Jiang H, Cheng B . A novel maize homeodomain-leucine zipper (HD-Zip) I gene, Zmhdz10, positively regulates drought and salt tolerance in both rice and Arabidopsis. Plant Cell Physiol, 2014,55:1142-1156.
[34] Wu J, Zhou W, Gong X, Cheng B . Expression of ZmHDZ4, a maize homeodomain-Leucine Zipper I gene, confers tolerance to drought stress in transgenic rice. Plant Mol Biol Rep, 2016,34:845-853.
[35] Guo A Y, Zhu Q H, Chen X, Luo J C . GSDS: gene structure display server. Hereditas(Beijing), 2007,29:1023-1026.
[36] Letunic I, Doerks T, Bork Bork P . SMART: recent updates, new developments and status in 2015, Nucleic Acids Res, 2015, 43(Database issue):D257-D260.
[37] Larkin M A, Blackshields G, Brown N P, Chenna R, McGettigan P A, McWilliam H, Valentin F, Wallace I M, Wilm A, Lopez R, Thompson J D, Gibson T J, Higgins D G . Clustal W and Clustal X version 2.0. Bioinformatics, 2007,23:2947-2948.
[38] Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S . MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011,28:2731-2739.
[39] Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001,25:402-408.
[40] Gonzalez-Grandio E, Pajoro A, Franco-Zorrilla J M, Tarancon C, Immink R G, Cubas P . Abscisic acid signaling is controlled by a BRANCHED1/HD-ZIP I cascade in Arabidopsis axillary buds. Proc Natl Acad Sci USA, 2017,114:E245-E254.
[41] Shao J, Haider I, Xiong L, Zhu X, Hussain R M F, Overnas E, Meijer A H, Zhang G, Wang M, Bouwmeester H J, Ouwerkerk P B F . Functional analysis of the HD-Zip transcription factor genes Oshox12 and Oshox14 in rice. PLoS One, 2018,13:e0199248.
[42] Olsson A S, Engstrom P, Soderman E . The homeobox genes ATHB12 and ATHB7 encode potential regulators of growth in response to water deficit in Arabidopsis. Plant Mol Biol, 2004,55:663-677.
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[4] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[9] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[10] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[11] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[12] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[15] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!