作物学报 ›› 2020, Vol. 46 ›› Issue (4): 532-543.doi: 10.3724/SP.J.1006.2020.93040
梁思维1,姜昊梁1,翟立红2,万小荣1,李小琴1,蒋锋1,*(),孙伟1,*()
LIANG Si-Wei1,JIANG Hao-Liang1,ZHAI Li-Hong2,WAN Xiao-Rong1,LI Xiao-Qin1,JIANG Feng1,*(),SUN Wei1,*()
摘要:
转录因子是植物响应逆境胁迫的重要调节因子, 在其整个生长发育过程中发挥着重要的作用。HD-ZIP家族蛋白是植物中特有的一大类转录因子, 包含4个亚家族(HD-ZIP I~IV), 其中HD-ZIP I亚家族成员主要参与干旱、渗透压等极端环境和ABA及乙烯等激素处理的响应过程。本文采用隐马可夫模型(HMM)在玉米参考基因组中鉴定到17个HD-ZIP I亚家族成员, 这些基因不均匀分布于玉米6条染色体上, 与水稻的亲缘关系要近于拟南芥。玉米HD- ZIP I 亚家族基因在玉米7种组织中表现出多种表达模式, 具有明显的组织表达特异性。另外, HD-ZIP I亚家族基因对高盐、淹水及冷害等不同的逆境胁迫处理呈现出不同的响应模式及响应程度差异。5种不同激素处理后, 玉米HD-ZIP I亚家族基因也表现出复杂的响应模式。这些结果为进一步解析玉米HD-ZIP I亚家族基因的生物学功能和作用机理提供了一定的参考价值。
[1] | Verslues P E, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu J K . Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J, 2006,45:523-539. |
[2] | Yamaguchi-Shinozaki K, Shinozaki K . Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol, 2006,57:781-803. |
[3] | Zhu J K . Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002,53:247-273. |
[4] | Kim S, Kang J Y, Cho D I, Park J H, Kim S Y . ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J, 2004,40:75-87. |
[5] | Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K . Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol, 2007,143:1739-1751. |
[6] | Gao T, Wu Y, Zhang Y, Liu L, Ning Y, Wang D, Tong H, Chen S, Chu C, Xie Q . OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice. Plant Mol Biol, 2011,76:145-156. |
[7] | Hu T, Ye J, Tao P, Li H, Zhang J, Zhang Y, Ye Z . The tomato HD-Zip I transcription factor SlHZ24 modulates ascorbate accumulation through positive regulation of the D-mannose/L-galactose pathway. Plant J, 2016,85:16-29. |
[8] | Gong S, Ding Y, Hu S, Ding L, Chen Z, Zhu C . The role of HD-Zip class I transcription factors in plant response to abiotic stresses. Physiol Plant, 2019, doi: 10.1111/ppl.12965. |
[9] | Mukherjee K, Brocchieri L, Burglin T R . A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol Biol Evol, 2009,26:2775-2794. |
[10] | Agalou A, Purwantomo S, Overnas E, Johannesson H, Zhu X, Estiati A, de Kam R J, Engstrom P, Slamet-Loedin I H, Zhu Z, Wang M, Xiong L, Meijer A H, Ouwerkerk P B . A genome-wide survey of HD-Zip genes in rice and analysis of drought-responsive family members. Plant Mol Biol, 2008,66:87-103. |
[11] | Ariel F, Diet A, Verdenaud M, Gruber V, Frugier F, Chan R, Crespi M . Environmental regulation of lateral root emergence in Medicago truncatula requires the HD-Zip I transcription factor HB1. Plant Cell, 2010,22:2171-2183. |
[12] | Lin Z, Hong Y, Yin M, Li C, Zhang K, Grierson D . A tomato HD-Zip homeobox protein, LeHB-1, plays an important role in floral organogenesis and ripening. Plant J, 2008,55:301-310. |
[13] | Johannesson H, Wang Y, Hanson J, Engstrom P . The Arabidopsis thaliana homeobox gene ATHB5 is a potential regulator of abscisic acid responsiveness in developing seedlings. Plant Mol Biol, 2003,51:719-729. |
[14] | Manavella P A, Arce A L, Dezar C A, Bitton F, Renou J P, Crespi M, Chan R L . Cross-talk between ethylene and drought signalling pathways is mediated by the sunflower Hahb-4 transcription factor. Plant J, 2006,48:125-137. |
[15] | Li W, Dong J, Cao M, Gao X, Wang D, Liu B, Chen Q . Genome-wide identification and characterization of HD-ZIP genes in potato. Gene, 2019,697:103-117. |
[16] | Li Y, Xiong H, Cuo D, Wu X, Duan R . Genome-wide characterization and expression profiling of the relation of the HD-Zip gene family to abiotic stress in barley ( Hordeum vulgare L.). Plant Physiol Biochem, 2019,141:250-258. |
[17] | Yue H, Shu D, Wang M, Xing G, Zhan H, Du X, Song W, Nie X . Genome-wide identification and expression analysis of the HD-Zip gene family in wheat (Triticum aestivum L.). Genes(Basel), 2018,9(2), doi: 10.3390/genes9020070. |
[18] | Ariel F D, Manavella P A, Dezar C A, Chan R L . The true story of the HD-Zip family. Trends Plant Sci, 2007, 12:419-426. |
[19] | Henriksson E, Olsson A S, Johannesson H, Johansson H, Hanson J, Engstrom P, Soderman E . Homeodomain leucine zipper class I genes in Arabidopsis. Expression patterns and phylogenetic relationships. Plant Physiol, 2005,139:509-518. |
[20] | Romani F, Ribone P A, Capella M, Miguel V N, Chan R L . A matter of quantity: common features in the drought response of transgenic plants overexpressing HD-Zip I transcription factors. Plant Sci, 2016,251:139-154. |
[21] | Perotti M F, Ribone P A, Chan R L . Plant transcription factors from the homeodomain-leucine zipper family: I. Role in development and stress responses. IUBMB Life, 2017,69:280-289. |
[22] | Hu J, Chen G, Yin W, Cui B, Yu X, Lu Y, Hu Z . Silencing of SlHB2 improves drought, salt stress tolerance, and induces stress-related gene expression in tomato. J Plant Growth Regul, 2017,36:578-589. |
[23] | Ni Y, Wang X, Li D, Wu Y, Xu W, Li X . Novel cotton homeobox gene and its expression profiling in root development and in response to stresses and phytohormones. Acta Biochim Biophys Sin(Shanghai), 2008,40:78-84. |
[24] | Zhang S, Haider I, Kohlen W, Jiang L, Bouwmeester H, Meijer A H, Schluepmann H, Liu C M, Ouwerkerk P B . Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice. Plant Mol Biol, 2012,80:571-585. |
[25] | Dezar C A, Gago G M, Gonzalez D H, Chan R L . Hahb-4, a sunflower homeobox-leucine zipper gene, is a developmental regulator and confers drought tolerance to Arabidopsis thaliana plants. Transgenic Res, 2005,14:429-440. |
[26] | Cabello J V, Giacomelli J I, Gomez M C, Chan R L . The sunflower transcription factor HaHB11 confers tolerance to water deficit and salinity to transgenic Arabidopsis and alfalfa plants. J Biotechnol, 2017,257:35-46. |
[27] | Cabello J V, Arce A L, Chan R L . The homologous HD-Zip I transcription factors HaHB1 and AtHB13 confer cold tolerance via the induction of pathogenesis-related and glucanase proteins. Plant J, 2012,69:141-153. |
[28] | Capella M, Ribone P A, Arce A L, Chan R L . Arabidopsis thaliana HomeoBox 1 (AtHB1), a Homedomain-Leucine Zipper I (HD-Zip I) transcription factor, is regulated by PHYTOCHROME-INTERACTING FACTOR 1 to promote hypocotyl elongation. New Phytol, 2015,207:669-682. |
[29] | Parveen S, Pandey A, Jameel N, Chakraborty S, Chakraborty N . Transcriptional regulation of chickpea ferritin CaFer1 influences its role in iron homeostasis and stress response. J Plant Physiol, 2018,222:9-16. |
[30] | Ebrahimian-Motlagh S, Ribone P A, Thirumalaikumar V P, Allu A D, Chan R L, Mueller-Roeber B, Balazadeh S . JUNGBRUNNEN1 confers drought tolerance downstream of the HD-Zip I transcription factor AtHB13. Front Plant Sci, 2017,8:2118. |
[31] | Dai M, Hu Y, Ma Q, Zhao Y, Zhou D X . Functional analysis of rice HOMEOBOX4(Oshox4) gene reveals a negative function in gibberellin responses. Plant Mol Biol, 2008, 66:289-301. |
[32] | Zhou W, Malabanan P B, Abrigo E . OsHox4 regulates GA signaling by interacting with DELLA-like genes and GA oxidase genes in rice. Euphytica, 2015,201:97-107. |
[33] | Zhao Y, Ma Q, Jin X, Peng X, Liu J, Deng L, Yan H, Sheng L, Jiang H, Cheng B . A novel maize homeodomain-leucine zipper (HD-Zip) I gene, Zmhdz10, positively regulates drought and salt tolerance in both rice and Arabidopsis. Plant Cell Physiol, 2014,55:1142-1156. |
[34] | Wu J, Zhou W, Gong X, Cheng B . Expression of ZmHDZ4, a maize homeodomain-Leucine Zipper I gene, confers tolerance to drought stress in transgenic rice. Plant Mol Biol Rep, 2016,34:845-853. |
[35] | Guo A Y, Zhu Q H, Chen X, Luo J C . GSDS: gene structure display server. Hereditas(Beijing), 2007,29:1023-1026. |
[36] | Letunic I, Doerks T, Bork Bork P . SMART: recent updates, new developments and status in 2015, Nucleic Acids Res, 2015, 43(Database issue):D257-D260. |
[37] | Larkin M A, Blackshields G, Brown N P, Chenna R, McGettigan P A, McWilliam H, Valentin F, Wallace I M, Wilm A, Lopez R, Thompson J D, Gibson T J, Higgins D G . Clustal W and Clustal X version 2.0. Bioinformatics, 2007,23:2947-2948. |
[38] | Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S . MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011,28:2731-2739. |
[39] | Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001,25:402-408. |
[40] | Gonzalez-Grandio E, Pajoro A, Franco-Zorrilla J M, Tarancon C, Immink R G, Cubas P . Abscisic acid signaling is controlled by a BRANCHED1/HD-ZIP I cascade in Arabidopsis axillary buds. Proc Natl Acad Sci USA, 2017,114:E245-E254. |
[41] | Shao J, Haider I, Xiong L, Zhu X, Hussain R M F, Overnas E, Meijer A H, Zhang G, Wang M, Bouwmeester H J, Ouwerkerk P B F . Functional analysis of the HD-Zip transcription factor genes Oshox12 and Oshox14 in rice. PLoS One, 2018,13:e0199248. |
[42] | Olsson A S, Engstrom P, Soderman E . The homeobox genes ATHB12 and ATHB7 encode potential regulators of growth in response to water deficit in Arabidopsis. Plant Mol Biol, 2004,55:663-677. |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[4] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[5] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[6] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[7] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[8] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[9] | 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839. |
[10] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[11] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[12] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[13] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[14] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[15] | 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623. |
|