欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (6): 858-868.doi: 10.3724/SP.J.1006.2020.91063

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

宁麦9号与扬麦158株高及其构成因素的遗传解析

姜朋,何漪,张旭,吴磊,张平平,马鸿翔()   

  1. 江苏省农业科学院 / 江苏省农业生物学重点实验室 / 江苏省现代作物生产协同创新中心, 江苏南京 210014
  • 收稿日期:2019-10-15 接受日期:2020-01-15 出版日期:2020-06-12 网络出版日期:2020-02-17
  • 通讯作者: 马鸿翔
  • 作者简介:E-mail: hmjp2005@163.com
  • 基金资助:
    国家重点研发计划项目(2017YFD0100801);国家现代农业产业技术体系建设专项(CARS-3);国家自然科学基金项目(31671690)

Genetic analysis of plant height and its components for wheat (Triticum aestivum L.) cultivars Ningmai 9 and Yangmai 158

JIANG Peng,HE Yi,ZHANG Xu,WU Lei,ZHANG Ping-Ping,MA Hong-Xiang()   

  1. Jiangsu Academy of Agricultural Sciences / Jiangsu Provincial Key Laboratory for Agrobiology / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210014, Jiangsu, China
  • Received:2019-10-15 Accepted:2020-01-15 Published:2020-06-12 Published online:2020-02-17
  • Contact: Hong-Xiang MA
  • Supported by:
    National Key Project for the Research and Development of China(2017YFD0100801);China Agriculture Research System(CARS-3);National Natural Science Foundation of China(31671690)

摘要:

宁麦9号与扬麦158是我国长江中下游麦区的主栽品种和骨干亲本, 长江中下游麦区近3年来审定品种中80%都是其衍生后代, 研究其性状的遗传具重要意义。以宁麦9号与扬麦158为亲本构建的包含282个家系的重组自交系群体为材料, 利用Illumina 90k芯片对群体进行基因型分析, 建立高密度遗传图谱。连续3个生长季对株高及节间长度、穗长等株高构成因素进行测定, 结合遗传图谱对株高及相关性状进行QTL定位, 获得14个控制株高及其构成因素的稳定表达位点。通过进一步位置比对, 聚焦到6个染色体区段, 初步明确了各节间对株高的遗传调控机制。同时, 将6个染色体区段中同源性较低的连锁标记转化为适用于高通量筛选的KASP标记, 利用101份区域试验材料进行标记效应验证, 结果显示聚合Qph-2DQph-5A.1两个位点具有较高的选择效率, 继续聚合Q2A后, 中选材料显著减少, 可能降低选择效率; 对Q2AQ5A两个一因多效位点的选择建议以降低株高的等位变异为主; Qd1-5D可作为穗下节间(D1)的选择标记对株高展开优化选择。期望以上结果能为长江中下游麦区的小麦株高遗传改良提供帮助。

关键词: 小麦, 宁麦9号, 扬麦158, 株高, KASP标记

Abstract:

Ningmai 9 and Yangmai 158 are the main wheat cultivars and core parents in the middle and lower reaches of the Yangtze River in China. In the past three years, 80% of the released varieties in the middle and lower reaches of the Yangtze River had the background of Ningmai 9 or Yangmai 158. To make better use of these two parents, the genetic mechanism of their traits need to be further clarified. A high-density genetic map was constructed by Illumina 90k chip using 282 recombinant inbred lines (RILs) from the cross between Ningmai 9 and Yangmai 158. In this study, the traits including plant height, internode length, and spike length were determined in three consecutive growing seasons, and 14 stable QTLs were obtained by QTL mapping. By further position alignment, we focused on six chromosome intervals, which preliminarily revealed the genetic regulatory mechanism of the internode on plant height. KASP markers suitable for high-throughput analysis were developed based on the low-homology markers in the six chromosome intervals, and they were further validated in 101 wheat accessions. The polymerization of Qph-2D and Qph-5A.1 had high selection efficiency which might be decreased if further intruding Q2A. It suggests that the selection of Q2A and Q5A should mainly focus on the alleles reducing plant height, and Qd1-5D could be used in marker-assisted selection for internode length below spike (D1). The results in this study may provide assistance for wheat height genetic improvement in the middle and lower reaches of the Yangtze River.

Key words: wheat (Triticum aestivum L.), Ningmai 9, Yangmai 158, plant height, KASP marker

图1

宁麦9号与扬麦158的田间表现"

图2

宁麦9号与扬麦158株高相关分子标记检测 a: 宁麦9号; b: 扬麦158; M: marker。"

表1

株高及其构成因素的表型统计"

性状
Trait
环境
Environment
宁麦9号
Ningmai 9
(cm)
扬麦158
Yangmai 158
(cm)
重组自交系群体 RIL population 遗传力
Heritability
最大值
Max
(cm)
最小值
Min
(cm)
平均值
Mean
(cm)
标准差
SD
变异系数
CV(%)
倒五节
D5
2017 4.71 5.64 8.72 2.92 5.83 1.06 18.14 0.43
2018 4.39 5.66 10.15 3.49 5.84 1.06 18.17
2019 3.72 3.76 6.36 1.88 3.86 0.87 22.58
倒四节
D4
2017 7.38 8.05 12.59 5.58 8.16 1.04 12.79 0.51
2018 6.89 7.76 12.75 5.50 8.47 1.01 11.96
2019 5.28 6.78 10.63 4.93 7.04 0.92 13.10
倒三节
D3
2017 8.43 10.08 15.84 8.50 11.28 1.31 11.62 0.61
2018 11.56 13.80 18.87 9.09 13.05 1.56 11.92
2019 9.11 11.16 15.73 7.61 11.17 1.30 11.63
倒二节
D2
2017 15.65 19.24 25.58 12.33 19.62 1.91 9.74 0.76
2018 18.66 20.63 27.27 16.83 22.17 1.88 8.47
2019 17.40 21.34 26.21 15.66 21.11 1.82 8.60
倒一节
D1
2017 26.28 28.99 38.16 20.04 29.40 2.97 10.11 0.83
2018 29.83 32.31 42.63 23.87 32.43 2.82 8.70
2019 27.53 31.26 41.41 23.02 32.07 3.05 9.50
穗长
Spike length
2017 9.85 10.43 12.37 6.50 9.49 0.89 9.40 0.72
2018 8.14 9.11 10.78 5.97 8.73 0.88 10.03
2019 7.31 8.21 10.33 5.44 7.82 0.87 11.13
株高
Plant height
2017 72.29 82.43 101.93 59.54 83.84 6.45 7.69 0.78
2018 79.48 89.26 108.17 72.53 90.78 6.20 6.83
2019 70.35 82.51 102.62 64.25 83.07 6.11 7.36

表2

株高及其构成因素的方差分析(F值) "

项目
Item
倒五节
D5
倒四节
D4
倒三节
D3
倒二节
D2
倒一节
D1
穗长
Spike length
株高
Plant height
基因型 Genotype 4.15** 7.08** 8.37** 18.23** 17.98 ** 13.91** 40.51**
环境 Environment 1009.08** 719.59** 783.47** 1205.13** 693.65** 1859.74** 2491.39**
基因型×环境 Genotype×Environment 2.35** 3.45** 3.25** 4.30** 3.06** 3.87** 8.81**

表3

株高及其构成因素的相关分析"

性状
Trait
环境
Environment
倒五节D5 倒四节D4 倒三节D3 倒二节D2 倒一节D1 穗长
Spike length
株高
Plant height
倒五节
D5
2017 (0.266**)
2018 (0.294**)
2019 (0.049)
倒四节
D4
2017 0.632** (0.370**)
2018 0.551** (0.400**)
2019 0.714** (0.070)
倒三节
D3
2017 0.546** 0.631** (0.347**)
2018 0.466** 0.697** (0.500**)
2019 0.531** 0.803** (0.268**)
倒二节
D2
2017 0.388** 0.510** 0.637** (0.506**)
2018 0.285** 0.487** 0.549** (0.639**)
2019 0.219** 0.452** 0.570** (0.459**)
倒一节
D1
2017 0.242** 0.277** 0.309** 0.471** (0.616**)
2018 0.163** 0.320** 0.184** 0.524** (0.733**)
2019 0.057 0.190** 0.198** 0.618** (0.512**)
穗长
Spike length
2017 0.026 0.055 0.059 0.169** 0.157** (0.467**)
2018 -0.058 -0.042 -0.171** 0.105 0.187** (0.524**)
2019 0.222** 0.125* -0.015 0.067 0.118* (0.326**)
株高
Plant height
2017 0.610** 0.683** 0.737** 0.815** 0.771** 0.287** (0.533**)
2018 0.531** 0.719** 0.670** 0.821** 0.765** 0.199** (0.689**)
2019 0.490** 0.673** 0.678** 0.840** 0.784** 0.267** (0.456**)

表4

株高及其构成因素的QTL定位"

序号
No.
QTL 遗传位置
Genetic position
区间
Interval
2017 2018 2019
LOD 表型贡献率
PVE (%)
加性效应
AEa
LOD 表型贡献率
PVE (%)
加性效应
AE
LOD 表型贡献率
PVE (%)
加性效应
AE
1 Qd5-5A 52.35?55.75 wsnp_Ex_rep_c104539_89224552-RFL_Contig4162_1285 5.90 8.89 0.31 3.11 4.69 0.24
2 Qd4-5A 52.35?56.55 wsnp_Ex_rep_c104539_89224552-RAC875_c103967_76 4.22 7.66 0.26 4.40 2.73 0.24
3 Qd3-5A 52.45?59.75 wsnp_Ex_c49211_53875575-BS00000365_51 6.90 7.89 0.39 4.23 5.18 0.38 4.73 5.25 0.32
4 Qd2-2A 109.15?112.05 Tdurum_contig61938_424-wsnp_Ex_c3695_6740339 3.97 5.93 ?0.46 3.34 4.26 ?0.39
5 Qd2-5A 55.85?59.25 BS00096758_51-BS00098207_51 6.58 9.97 0.58 7.50 10.18 0.60
6 Qd2-7A 49.55?51.95 RAC875_c16624_970-wsnp_Ex_c14009_21899923 4.10 6.13 ?0.48 8.13 11.05 ?0.62 5.30 6.13 ?0.49
7 Qd1-2A 109.35?110.25 Tdurum_contig61938_424-IAAV880 4.74 6.53 ?0.79 3.65 5.51 ?0.63 6.22 9.29 ?0.89
8 Qd1-5A 56.95?58.55 RAC875_c103967_76-BS00098207_51 3.46 5.20 0.60 3.51 5.38 0.66
9 Qd1-5D 9.35?13.85 Kukri_c14878_97-Kukri_c7786_81 3.57 4.87 0.67 3.92 5.90 0.64 2.96 4.30 0.59
10 Qph-2A 109.35?110.55 Tdurum_contig61938_424-IAAV880 4.65 5.79 ?1.56 3.03 3.45 ?1.26
11 Qph-2D 15.55?29.65 BS00022211_51-RAC875_c173_905 3.16 3.99 ?1.25 4.48 4.88 ?1.45
12 Qph-5A.1 18.85?26.55 wsnp_Ex_c12440_19836844-Ex_c6161_335 3.07 3.76 1.21 2.99 2.84 1.08
13 Qph-5A.2 52.65?59.75 wsnp_Ex_c49211_53875575-BS00000365_51 6.49 8.24 1.79 7.34 9.53 2.03 6.35 6.38 1.67
14 Qph-7A 43.45?52.05 Ex_c6196_971-wsnp_Ex_c14009_21899923 7.09 8.94 ?2.02 5.45 5.57 ?1.62

图3

株高及其构成因素的QTL定位 图中数字与表4中QTL的序号一致。"

表5

株高及其构成因素的KASP标记序列"

标记 Marker QTL SNP F1 F2 R
IAAV880 Q2A T/C ccAgaacgcagtggagagtT ccAgaacgcagtggagagtC tgcagacgggagcttagG
IACX9152 Qph-2D T/C aacagagtctcaGtctctccA aacagagtctcaGtctctccG gcctgtCattctcttttcctAtCtT
BobWhite_c1796_701 Qph-5A.1 T/G ggccccggatccaaaatcT ggccccggatccaaaatcG acggagcaaagtggtcttgt
BS00098207_51 Q5A T/C ccaagcttcccgtgacaT ccaagcttcccgtgacaC gccatgatgttTCtgaacttctcT
Kukri_c7786_81 Qd1-5D T/C catcaccttgtatccttcctcA catcaccttgtatccttcctcG ggttctttgttttgagaagagagG
wsnp_JD_c6050_7214383 Q7A A/G GtCgttccacctaacagtacT GtCgttccacctaacagtacC gCtgaatcagaagaatgcacagA

图4

株高及其构成因素的KASP标记开发 A表示宁麦9号等位变异类型, B表示扬麦158等位变异类型。"

表6

区域试验材料中不同等位变异的t-检测"

Q2A Qph-2D Qph-5A.1 Q5A Qd1-5D Q7A
宁麦9号等位变异Ningmai 9 allele (cm) 87.82 (79) 87.08 (53) 88.53 (57) 86.44 (9) 87.75 (40) 86.50 (2)
扬麦158等位变异Yangmai 158 allele (cm) 88.41 (22) 88.92 (48) 87.20 (44) 88.10 (92) 88.08 (61) 87.98 (99)
差值 Difference (cm) 0.59 1.84 1.32 1.65 0.33 1.48
tt-value -0.54 2.08 1.47 -1.05 0.36 0.46
PP-value 0.59 0.04* 0.15 0.30 0.72 0.65

表7

QTL聚合的效应分析"

Qph-2D+Qph-5A.1 Qph-2D+Qph-5A.1+Q2A
株高+ Plant height+ (cm) 89.64 (22) 95.50 (2)
株高? Plant height? (cm) 85.61 (18) 84.85 (14)
差值 Difference (cm) 4.03 10.65
tt-value 2.45 2.21
PP-value 0.02* 0.04*
[1] Hedden P . The genes of the green revolution. Trends Genet, 2003,19:5-9.
[2] Mo Y, Vanzetti L S, Hale I, Spagnolo E J, Guidobaldi F, Al-Oboudi J, Odle N, Pearce S, Helguera M, Dubcovsky J . Identification and characterization of Rht25, a locus on chromosome arm 6AS affecting wheat plant height, heading time, and spike development. Theor Appl Genet, 2018,131:2021-2035.
[3] Tian X, Wen W, Xie L, Fu L, Xu D, Fu C, Wang D, Chen X, Xia X, Chen Q, He Z, Cao S . Molecular mapping of reduced plant height gene Rht24 in bread wheat. Front Plant Sci, 2017, .
[4] McIntosh R A, Dubcovsky J, Rogers W J, Morris C, Xia X C . Catalogue of gene symbols for wheat: 2017 supplement. . Accessed 17 Feb 2018.
[5] Ellis M, Spielmeyer W, Gale K, Rebetzke G, Richards R . “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet, 2002,105:1038-1042.
[6] Asplund L, Leino M W, Hagenblad J . Allelic variation at the Rht8 locus in a 19th century wheat collection. Sci World J, 2012,2012:385610.
[7] Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder S, Weber E . Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat ( Triticum aestivum L.). Theor Appl Genet, 2002,105:921-936.
doi: 10.1007/s00122-002-0994-1
[8] Peng J, Yefim R, Tzion F, RiDer M L, Youchun F, Eviatar N, Abraham K . Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci USA, 2003,100:2489-2494.
[9] Liu G, Xu S B, Ni Z F, Xie C J, Qin D D, Li J, Lu L H, Zhang J P, Peng H R, Sun Q X . Molecular dissection of plant height QTLs using recombinant inbred lines from hybrids between common wheat ( Triticum aestivum L.) and spelt wheat( Triticum spelta L.). Chin Sci Bull, 2011,56:1897-1903.
[10] Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Snape J . Meta-QTL analysis of the genetic control of crop height in elite European winter wheat germplasm. Mol Breed, 2012,29:159-171.
[11] Tobias W, Langer S M, Longin C F H . Genetic control of plant height in European winter wheat cultivars. Theor Appl Genet, 2015,128:865-874.
[12] Mccartney C A, Somers D J, Humphreys D G, Lukow O, Ames N, Noll J, Cloutier S, McCallum B D . Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross Rl4452x ‘AC Domain’. Genome, 2005,48:870.
[13] Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Herry L, Faure S, Laurie D, Bilham L, Snape J . Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theor Appl Genet, 2009,119:383-395.
[14] Cui F, Li J, Ding A, Zhao C, Wang L, Wang X, Li S, Bao Y, Li X, Feng D, Kong L, Wang H . Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theor Appl Genet, 2011,122:1517-1536.
[15] Zhang N, Fan X, Cui F, Zhao C, Zhang W, Zhao X, Yang L, Pan R, Chen M, Han J . Characterization of the temporal and spatial expression of wheat ( Triticum aestivum L.) plant height at the QTL level and their influence on yield-related traits. Theor Appl Genet, 2017,130:1235-1252.
[16] Cavanagh C R, Shiaoman C, Shichen W, Bevan Emma H, Stuart S, Seifollah K, Kerrie F, Cyrille S, Brown-Guedira G L, Alina A, . Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA, 2013,110:8057-8062.
[17] Wang S, Wong D, Forrest K, Allen A, Chao S, Huang B E, Maccaferri M, Salvi S, Milner S G, Cattivelli L . Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J, 2014,12:787-796.
[18] Cui F, Zhang N, Fan X, Zhang W, Zhao C, Yang L, Pan R, Chen M, Han J, Zhao X . Utilization of a wheat660k SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci Rep, 2017,7:3788.
[19] Consortium T I W G S. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361: eaar7191.
[20] 张晓, 张伯桥, 江伟, 吕国锋, 张晓祥, 李曼, 高德荣 . 扬麦系列品种品质性状相关基因的分子检测. 中国农业科学, 2015,48:3779-3793.
Zhang X, Zhang B Q, Jiang W, Lyu G F, Zhang X X, Li M, Gao D R . Molecular detection for quality traits-related genes in Yangmai series wheat cultivars. Sci Agric Sin, 2015,48:3779-3793 (in Chinese with English abstract).
[21] Jiang P, Zhang P P, Zhang X, Ma H X . Genetic contribution of Ningmai 9 wheat to its derivatives evaluated by using SNP markers. Int J Genomics, 2016,2016:3602986.
[22] He X, Lillemo M, Shi J, Wu J, Bjørnstad Å, Belova T, Dreisigacker S, Duveiller E, Singh P . QTL characterization of Fusarium head blight resistance in CIMMYT bread wheat line Soru#1. PLoS One, 2016,11:e0158052.
[23] Jiang P, Zhang X, Wu L, He Y, Zhuang W, Cheng X, Ge W, Ma H, Kong L . A novel QTL on chromosome 5AL of Yangmai 158 increases resistance to Fusarium head blight in wheat. Plant Pathol, 2020,69:249-258.
[24] Meng L, Li H H, Zhang L Y, Wang J K . QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015,3:269-283.
[25] Li H, Ye G, Wang J . A modified algorithm for the improvement of composite interval mapping. Genetics, 2007,175:361-374.
[26] Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W . Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 1984,81:8014-8018.
[27] 程顺和, 张勇, 张伯桥, 高德荣, 吴宏亚, 陆成彬, 吕国锋, 王朝顺 . 小麦抗赤霉病育种2条技术路线的探讨. 扬州大学学报(农业与生命科学版), 2003,24:59-62.
Cheng S H, Zhang Y, Zhang B Q, Gao D R, Wu H Y, Lu C B, Lyu G F, Wang C S . Discussion of two ways of breeding scab resistance in wheat. J Yangzhou Univ ( Agric & Life Sci), 2003,24:59-62 (in Chinese with English abstract).
[28] 朱展望, 徐登安, 程顺和, 高春保, 夏先春, 郝元峰, 何中虎 . 中国小麦品种抗赤霉病基因Fhb1的鉴定与溯源. 作物学报, 2018,44:473-482.
Zhu Z W, Xu D A, Cheng S H, Gao C B, Xia X C, Hao Y F, He Z H . Characterization of Fusarium head blight resistance gene Fhb1 and its putative ancestor in Chinese wheat germplasm. Acta Agron Sin, 2018, 44: 473-482 (in Chinese with English abstract).
[29] 张宏军, 宿振起, 柏贵华, 张旭, 马鸿翔, 李腾, 邓云, 买春艳, 于立强, 刘宏伟, 杨丽, 李洪杰, 周阳 . 利用Fhb1基因功能标记选择提高黄淮冬麦区小麦品种对赤霉病的抗性. 作物学报, 2018,44:505-511.
Zhang H J, Su Z Q, Bai G H, Zhang X, Ma H X, Li T, Deng Y, Mai C Y, Yu L Q, Liu H W . Improvement of resistance of wheat cultivars to Fusarium head blight in the Yellow-Huai rivers valley winter wheat zone with functional marker selection of Fhb1 gene. Acta Agron Sin, 2018, 44: 505-511 (in Chinese with English abstract).
[30] 陈广凤, 陈建省, 田纪春 . 小麦株高相关性状与SNP标记全基因组关联分析. 作物学报, 2015,41:1500-1509.
Chen G F, Chen J S, Tian J C . Genome-wide association analysis between SNP markers and plant height related traits in wheat. Acta Agron Sin, 2015,41:1500-1509 (in Chinese with English abstract).
[31] 武炳瑾, 冯洁, 崔紫霞, 张传量, 孙道杰 . 利用90k基因芯片进行小麦株高QTL分析 . 麦类作物学报, 2017, 5: 578-584.
Wu B J, Feng J, Cui Z X, Zhang C L, Sun D J . QTL analysis of plant height by using 90k chip technology. J Triticeae Crop, 2017,5:578-584 (in Chinese with English abstract).
[32] Ellis M H, Rebetzke G J, Azanza F, Richards R A, Spielmeyer W . Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor Appl Genet, 2005,111:423-430.
[33] Wang Z H, Wu X S, Ren Q, Chang X P, Li R Z, Jing R L . QTL mapping for developmental behavior of plant height in wheat ( Triticum aestivum L.). Euphytica, 2010,174:447-458.
[34] 梁子英, 李美霞, 王竹林, 沈玮囡, 奚亚军, 孙风丽, 刘曙东 . 小麦株高相关性状的QTL分析. 西北农业学报, 2014,23:64-72.
Liang Z Y, Li M X, Wang Z L, Shen W N, Xi Y J, Sun F L, Liu S D . Mapping quantitative trait loci for plant height related characteristics in wheat. Acta Agric Boreali-Occident Sin, 2014,23:64-72 (in Chinese with English abstract).
[35] Peng Z S, Li X, Yang Z J, Liao M L . A new reduced height gene found in the tetraploid semi-dwarf wheat landrace Aiganfanmai. Genet Mol Res, 2011,10:2349.
[36] Roncallo P F, Cervigni G L, Jensen C, Miranda R, Carrera A D, Helguera M, Echenique V . QTL analysis of main and epistatic effects for flour color traits in durum wheat. Euphytica, 2012,185:77-92.
[37] Kamran A, Iqbal M, Spaner D . Flowering time in wheat ( Triticum aestivum L.): a key factor for global adaptability. Euphytica, 2014,197:1-26.
[38] Botwright Acuña T L, Rebetzke G J, He X, Maynol E, Wade L J . Mapping quantitative trait loci associated with root penetration ability of wheat in contrasting environments. Mol Breed, 2014,34:631-642.
[39] Dreisigacker S, Wang X, Martinez Cisneros B A, Jing R, Singh P K, . Adult-plant resistance to Septoria tritici blotch in hexaploid spring wheat. Theor Appl Genet, 2015,128:2317-2329.
[40] Kelbert A J, Spaner D, Briggs K G, King J R . The association of culm anatomy with lodging susceptibility in modern spring wheat genotypes. Euphytica, 2004,136:211-221.
[41] 朱新开, 郭文善, 李春燕, 封超年, 彭永欣 . 小麦株高及其构成指数与产量及品质的相关性 . 麦类作物学报, 2009, 29: 1034‒1038.
Zhu X K, Guo W S, Li C Y, Feng C N, Peng Y X . Relationship of plant height component indexes with grain yield and quality in wheat. J Triticeae Crop, 2009,29:1034-1038 (in Chinese with English abstract).
[42] 朱新开, 王祥菊, 郭凯泉, 郭文善, 封超年, 彭永欣 . 小麦倒伏的茎秆特征及对产量与品质的影响. 麦类作物学报, 2006,26:87-92.
Zhu X K, Wang X J, Guo K Q, Guo W S, Feng C N, Peng Y X . Stem characteristics of wheat with stem lodging and effects of lodging on grain yield and quality. J Triticeae Crop, 2006,26:87-92 (in Chinese with English abstract).
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[4] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[5] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[6] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[7] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[8] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[11] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[12] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[13] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[14] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[15] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!