作物学报 ›› 2020, Vol. 46 ›› Issue (6): 858-868.doi: 10.3724/SP.J.1006.2020.91063
JIANG Peng,HE Yi,ZHANG Xu,WU Lei,ZHANG Ping-Ping,MA Hong-Xiang()
摘要:
宁麦9号与扬麦158是我国长江中下游麦区的主栽品种和骨干亲本, 长江中下游麦区近3年来审定品种中80%都是其衍生后代, 研究其性状的遗传具重要意义。以宁麦9号与扬麦158为亲本构建的包含282个家系的重组自交系群体为材料, 利用Illumina 90k芯片对群体进行基因型分析, 建立高密度遗传图谱。连续3个生长季对株高及节间长度、穗长等株高构成因素进行测定, 结合遗传图谱对株高及相关性状进行QTL定位, 获得14个控制株高及其构成因素的稳定表达位点。通过进一步位置比对, 聚焦到6个染色体区段, 初步明确了各节间对株高的遗传调控机制。同时, 将6个染色体区段中同源性较低的连锁标记转化为适用于高通量筛选的KASP标记, 利用101份区域试验材料进行标记效应验证, 结果显示聚合Qph-2D与Qph-5A.1两个位点具有较高的选择效率, 继续聚合Q2A后, 中选材料显著减少, 可能降低选择效率; 对Q2A与Q5A两个一因多效位点的选择建议以降低株高的等位变异为主; Qd1-5D可作为穗下节间(D1)的选择标记对株高展开优化选择。期望以上结果能为长江中下游麦区的小麦株高遗传改良提供帮助。
[1] | Hedden P . The genes of the green revolution. Trends Genet, 2003,19:5-9. |
[2] | Mo Y, Vanzetti L S, Hale I, Spagnolo E J, Guidobaldi F, Al-Oboudi J, Odle N, Pearce S, Helguera M, Dubcovsky J . Identification and characterization of Rht25, a locus on chromosome arm 6AS affecting wheat plant height, heading time, and spike development. Theor Appl Genet, 2018,131:2021-2035. |
[3] | Tian X, Wen W, Xie L, Fu L, Xu D, Fu C, Wang D, Chen X, Xia X, Chen Q, He Z, Cao S . Molecular mapping of reduced plant height gene Rht24 in bread wheat. Front Plant Sci, 2017, . |
[4] | McIntosh R A, Dubcovsky J, Rogers W J, Morris C, Xia X C . Catalogue of gene symbols for wheat: 2017 supplement. . Accessed 17 Feb 2018. |
[5] | Ellis M, Spielmeyer W, Gale K, Rebetzke G, Richards R . “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet, 2002,105:1038-1042. |
[6] | Asplund L, Leino M W, Hagenblad J . Allelic variation at the Rht8 locus in a 19th century wheat collection. Sci World J, 2012,2012:385610. |
[7] |
Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder S, Weber E . Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat ( Triticum aestivum L.). Theor Appl Genet, 2002,105:921-936.
doi: 10.1007/s00122-002-0994-1 |
[8] | Peng J, Yefim R, Tzion F, RiDer M L, Youchun F, Eviatar N, Abraham K . Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci USA, 2003,100:2489-2494. |
[9] | Liu G, Xu S B, Ni Z F, Xie C J, Qin D D, Li J, Lu L H, Zhang J P, Peng H R, Sun Q X . Molecular dissection of plant height QTLs using recombinant inbred lines from hybrids between common wheat ( Triticum aestivum L.) and spelt wheat( Triticum spelta L.). Chin Sci Bull, 2011,56:1897-1903. |
[10] | Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Snape J . Meta-QTL analysis of the genetic control of crop height in elite European winter wheat germplasm. Mol Breed, 2012,29:159-171. |
[11] | Tobias W, Langer S M, Longin C F H . Genetic control of plant height in European winter wheat cultivars. Theor Appl Genet, 2015,128:865-874. |
[12] | Mccartney C A, Somers D J, Humphreys D G, Lukow O, Ames N, Noll J, Cloutier S, McCallum B D . Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross Rl4452x ‘AC Domain’. Genome, 2005,48:870. |
[13] | Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Herry L, Faure S, Laurie D, Bilham L, Snape J . Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theor Appl Genet, 2009,119:383-395. |
[14] | Cui F, Li J, Ding A, Zhao C, Wang L, Wang X, Li S, Bao Y, Li X, Feng D, Kong L, Wang H . Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theor Appl Genet, 2011,122:1517-1536. |
[15] | Zhang N, Fan X, Cui F, Zhao C, Zhang W, Zhao X, Yang L, Pan R, Chen M, Han J . Characterization of the temporal and spatial expression of wheat ( Triticum aestivum L.) plant height at the QTL level and their influence on yield-related traits. Theor Appl Genet, 2017,130:1235-1252. |
[16] | Cavanagh C R, Shiaoman C, Shichen W, Bevan Emma H, Stuart S, Seifollah K, Kerrie F, Cyrille S, Brown-Guedira G L, Alina A, . Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA, 2013,110:8057-8062. |
[17] | Wang S, Wong D, Forrest K, Allen A, Chao S, Huang B E, Maccaferri M, Salvi S, Milner S G, Cattivelli L . Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J, 2014,12:787-796. |
[18] | Cui F, Zhang N, Fan X, Zhang W, Zhao C, Yang L, Pan R, Chen M, Han J, Zhao X . Utilization of a wheat660k SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci Rep, 2017,7:3788. |
[19] | Consortium T I W G S. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361: eaar7191. |
[20] | 张晓, 张伯桥, 江伟, 吕国锋, 张晓祥, 李曼, 高德荣 . 扬麦系列品种品质性状相关基因的分子检测. 中国农业科学, 2015,48:3779-3793. |
Zhang X, Zhang B Q, Jiang W, Lyu G F, Zhang X X, Li M, Gao D R . Molecular detection for quality traits-related genes in Yangmai series wheat cultivars. Sci Agric Sin, 2015,48:3779-3793 (in Chinese with English abstract). | |
[21] | Jiang P, Zhang P P, Zhang X, Ma H X . Genetic contribution of Ningmai 9 wheat to its derivatives evaluated by using SNP markers. Int J Genomics, 2016,2016:3602986. |
[22] | He X, Lillemo M, Shi J, Wu J, Bjørnstad Å, Belova T, Dreisigacker S, Duveiller E, Singh P . QTL characterization of Fusarium head blight resistance in CIMMYT bread wheat line Soru#1. PLoS One, 2016,11:e0158052. |
[23] | Jiang P, Zhang X, Wu L, He Y, Zhuang W, Cheng X, Ge W, Ma H, Kong L . A novel QTL on chromosome 5AL of Yangmai 158 increases resistance to Fusarium head blight in wheat. Plant Pathol, 2020,69:249-258. |
[24] | Meng L, Li H H, Zhang L Y, Wang J K . QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015,3:269-283. |
[25] | Li H, Ye G, Wang J . A modified algorithm for the improvement of composite interval mapping. Genetics, 2007,175:361-374. |
[26] | Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W . Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 1984,81:8014-8018. |
[27] | 程顺和, 张勇, 张伯桥, 高德荣, 吴宏亚, 陆成彬, 吕国锋, 王朝顺 . 小麦抗赤霉病育种2条技术路线的探讨. 扬州大学学报(农业与生命科学版), 2003,24:59-62. |
Cheng S H, Zhang Y, Zhang B Q, Gao D R, Wu H Y, Lu C B, Lyu G F, Wang C S . Discussion of two ways of breeding scab resistance in wheat. J Yangzhou Univ ( Agric & Life Sci), 2003,24:59-62 (in Chinese with English abstract). | |
[28] | 朱展望, 徐登安, 程顺和, 高春保, 夏先春, 郝元峰, 何中虎 . 中国小麦品种抗赤霉病基因Fhb1的鉴定与溯源. 作物学报, 2018,44:473-482. |
Zhu Z W, Xu D A, Cheng S H, Gao C B, Xia X C, Hao Y F, He Z H . Characterization of Fusarium head blight resistance gene Fhb1 and its putative ancestor in Chinese wheat germplasm. Acta Agron Sin, 2018, 44: 473-482 (in Chinese with English abstract). | |
[29] | 张宏军, 宿振起, 柏贵华, 张旭, 马鸿翔, 李腾, 邓云, 买春艳, 于立强, 刘宏伟, 杨丽, 李洪杰, 周阳 . 利用Fhb1基因功能标记选择提高黄淮冬麦区小麦品种对赤霉病的抗性. 作物学报, 2018,44:505-511. |
Zhang H J, Su Z Q, Bai G H, Zhang X, Ma H X, Li T, Deng Y, Mai C Y, Yu L Q, Liu H W . Improvement of resistance of wheat cultivars to Fusarium head blight in the Yellow-Huai rivers valley winter wheat zone with functional marker selection of Fhb1 gene. Acta Agron Sin, 2018, 44: 505-511 (in Chinese with English abstract). | |
[30] | 陈广凤, 陈建省, 田纪春 . 小麦株高相关性状与SNP标记全基因组关联分析. 作物学报, 2015,41:1500-1509. |
Chen G F, Chen J S, Tian J C . Genome-wide association analysis between SNP markers and plant height related traits in wheat. Acta Agron Sin, 2015,41:1500-1509 (in Chinese with English abstract). | |
[31] | 武炳瑾, 冯洁, 崔紫霞, 张传量, 孙道杰 . 利用90k基因芯片进行小麦株高QTL分析 . 麦类作物学报, 2017, 5: 578-584. |
Wu B J, Feng J, Cui Z X, Zhang C L, Sun D J . QTL analysis of plant height by using 90k chip technology. J Triticeae Crop, 2017,5:578-584 (in Chinese with English abstract). | |
[32] | Ellis M H, Rebetzke G J, Azanza F, Richards R A, Spielmeyer W . Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor Appl Genet, 2005,111:423-430. |
[33] | Wang Z H, Wu X S, Ren Q, Chang X P, Li R Z, Jing R L . QTL mapping for developmental behavior of plant height in wheat ( Triticum aestivum L.). Euphytica, 2010,174:447-458. |
[34] | 梁子英, 李美霞, 王竹林, 沈玮囡, 奚亚军, 孙风丽, 刘曙东 . 小麦株高相关性状的QTL分析. 西北农业学报, 2014,23:64-72. |
Liang Z Y, Li M X, Wang Z L, Shen W N, Xi Y J, Sun F L, Liu S D . Mapping quantitative trait loci for plant height related characteristics in wheat. Acta Agric Boreali-Occident Sin, 2014,23:64-72 (in Chinese with English abstract). | |
[35] | Peng Z S, Li X, Yang Z J, Liao M L . A new reduced height gene found in the tetraploid semi-dwarf wheat landrace Aiganfanmai. Genet Mol Res, 2011,10:2349. |
[36] | Roncallo P F, Cervigni G L, Jensen C, Miranda R, Carrera A D, Helguera M, Echenique V . QTL analysis of main and epistatic effects for flour color traits in durum wheat. Euphytica, 2012,185:77-92. |
[37] | Kamran A, Iqbal M, Spaner D . Flowering time in wheat ( Triticum aestivum L.): a key factor for global adaptability. Euphytica, 2014,197:1-26. |
[38] | Botwright Acuña T L, Rebetzke G J, He X, Maynol E, Wade L J . Mapping quantitative trait loci associated with root penetration ability of wheat in contrasting environments. Mol Breed, 2014,34:631-642. |
[39] | Dreisigacker S, Wang X, Martinez Cisneros B A, Jing R, Singh P K, . Adult-plant resistance to Septoria tritici blotch in hexaploid spring wheat. Theor Appl Genet, 2015,128:2317-2329. |
[40] | Kelbert A J, Spaner D, Briggs K G, King J R . The association of culm anatomy with lodging susceptibility in modern spring wheat genotypes. Euphytica, 2004,136:211-221. |
[41] | 朱新开, 郭文善, 李春燕, 封超年, 彭永欣 . 小麦株高及其构成指数与产量及品质的相关性 . 麦类作物学报, 2009, 29: 1034‒1038. |
Zhu X K, Guo W S, Li C Y, Feng C N, Peng Y X . Relationship of plant height component indexes with grain yield and quality in wheat. J Triticeae Crop, 2009,29:1034-1038 (in Chinese with English abstract). | |
[42] | 朱新开, 王祥菊, 郭凯泉, 郭文善, 封超年, 彭永欣 . 小麦倒伏的茎秆特征及对产量与品质的影响. 麦类作物学报, 2006,26:87-92. |
Zhu X K, Wang X J, Guo K Q, Guo W S, Feng C N, Peng Y X . Stem characteristics of wheat with stem lodging and effects of lodging on grain yield and quality. J Triticeae Crop, 2006,26:87-92 (in Chinese with English abstract). |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[3] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[4] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[5] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[6] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[7] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[8] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[9] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[10] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[11] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[12] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[13] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[14] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
[15] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
|