作物学报 ›› 2021, Vol. 47 ›› Issue (11): 2099-2110.doi: 10.3724/SP.J.1006.2021.04245
雷维1,2(), 王瑞莉1, 王刘艳1, 袁芳1,2, 孟丽姣1,2, 邢明礼1,2, 徐璐1,2, 唐章林1,2, 李加纳1,2, 崔翠1,*(), 周清元1,2,*()
LEI Wei1,2(), WANG Rui-Li1, WANG Liu-Yan1, YUAN Fang1,2, MENG Li-Jiao1,2, XING Ming-Li1,2, XU Lu1,2, TANG Zhang-Lin1,2, LI Jia-Na1,2, CUI Cui1,*(), ZHOU Qing-Yuan1,2,*()
摘要:
种子容重大小反映了作物光合产物在籽粒中的积累特性, 是油菜千粒重重要的组成部分, 筛选高容重种质资源, 研究容重的遗传特性在油菜遗传育种中具有非常重要的作用。本文以不同遗传背景的187份甘蓝型油菜品种(系)构成的自然群体为研究对象, 进行2年种子的容重及其相关性状(千粒重、体积)测定和资源评价, 基于最优模型对各性状进行全基因组关联分析(genome-wide association analysis, GWAS)和候选基因预测。结果显示, 187份材料在2年中容重及其关联性状在品种(系)间差异均达到显著水平(P<0.05), 筛选出3个种子千粒重较大的高容重种质资源。全基因组关联分析共检测到24个与种子容重及其相关性状显著关联的SNP位点, 可解释表型变异的8.21%~10.40%。通过单倍型分析确定关联SNP位点的Block区间, 其所在的Block覆盖了12个与容重、粒重和体积有关的候选基因, 主要编码转录因子(如WOX8、HAIKU1、AP2/ERF转录因子、Dof家族-Zinc finger超家族和BZR1转录因子)、酶类(如BKI1、KAT2、CEL1和UBP15)、DNA结合蛋白和激素响应蛋白(如ARF2和J3)。本研究结果将为进一步解析油菜千粒重的遗传机制、培育高容重油菜品种及后续基因的功能研究提供理论依据。
[1] | 刘后利. 实用油菜栽培学. 上海: 上海科学技术出版社, 1987. pp 316-320. |
Liu H L. Practical Rape Cultivation. Shanghai: Shanghai Scientific and Technical Publishers, 1987. pp 316-320(in Chinese). | |
[2] | 涂金星, 傅廷栋. 油菜品质育种现状及展望. 植物遗传资源学报, 2001, 2(4):53-58. |
Tu J X, Fu T D. The status and prospects of quality breeding of rape. J Plant Genet Resour, 2001, 2(4):53-58 (in Chinese with English abstract). | |
[3] |
Clarke J M, Simpson G M. Influence of irrigation and seeding rates on yield and yield components of Brassica napus L. cv. tower. Can J Plant Sci, 1978, 58: 731-737.
doi: 10.4141/cjps78-108 |
[4] |
Butruille D V, Guries R P, Osborn T C. Linkage analysis of molecular markers and quantitative trait loci in populations of inbred backcross lines of Brassica napus L. Genetics, 1999, 153: 949-964.
pmid: 10511570 |
[5] |
Lionneton E, Aubert G, Ochatt S, Merah O. Genetic analysis of agronomic and quality traits in mustard (Brassica juncea). Theor Appl Genet, 2004, 109: 792-799.
pmid: 15340689 |
[6] |
Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft L, Zhao J Y, Meng J L. Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus L. Genetics, 2009, 182: 851-861.
doi: 10.1534/genetics.109.101642 |
[7] | 惠飞虎, 石剑飞, 孙家刚, 冷锁虎, 唐瑶, 左青松. 油菜的源库关系研究: III. 油菜库容变化对粒重的影响. 江苏农业学报, 2006, 22: 109-112. |
Hui F H, Shi J F, Sun J G, Leng S H, Tang Y, Zuo Q S. Studies on source and sink of rapeseed: III. Effect of sink change on seed weight in rapeseed. J Jiangsu Agric Sci, 2006, 22: 109-112 (in Chinese with English abstract). | |
[8] | 易斌, 陈伟, 马朝芝, 傅廷栋, 涂金星. 甘蓝型油菜产量及相关性状的QTL分析. 作物学报, 2006, 32: 676-682. |
Yi B, Chen W, Ma C Z, Fu T D, Tu J X. Mapping of quantitative trait loci for yield and yield components in Brassica napus L. Acta Agron Sin, 2006, 32: 676-682 (in Chinese with English abstract). | |
[9] |
Quijada P A, Udall J A, Lambert B, Osborn T C. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. Identification of genomic regions from winter germplasm. Theor Appl Genet, 2006, 113: 549-561.
pmid: 16767447 |
[10] |
Udall J A, Quijada P A, Lambert B, Osborn T C. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2. Identification of alleles from unadapted germplasm. Theor Appl Genet, 2006, 113: 597-609.
doi: 10.1007/s00122-006-0324-0 |
[11] |
Radoev M, Becker H C, Ecke W. Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics, 2008, 179: 1547-1558.
doi: 10.1534/genetics.108.089680 |
[12] |
Fan C C, Cai G Q, Qin J, Li Q Y, Yang M G, Wu J Z, Fu T D, Liu K D, Zhou Y M. Mapping of quantitative trait loci and development of allele-specific markers for seed weight in Brassica napus L. Theor Appl Genet, 2010, 121: 1289-1301.
doi: 10.1007/s00122-010-1388-4 |
[13] |
Yang P, Shu C, Chen L, Xu J, Wu J, Liu K. Identification of a major QTL for silique length and seed weight in oilseed rape (Brassica napus L.). Theor Appl Genet, 2012, 125: 285-296.
doi: 10.1007/s00122-012-1833-7 pmid: 22406980 |
[14] |
Qin L P, Mao L, Sun C M, Pu Y Y, Fu T D, Ma C Z, Shen J X, Tu J X, Yi B, Wu J. Interpreting the genetic basis of silique traits in Brassica napus L. using a joint QTL network. Plant Breed, 2014, 133: 52-60.
doi: 10.1111/pbr.2014.133.issue-1 |
[15] |
Li F, Chen B Y, Xu K, Wu J F, Song W L, Bancroft I, Harper A L, Trict M, Liu S Y, Gao G Z, Wang N A, Yan G X, Qiao J W, Li J, Li H, Xiao X, Zhang T Y, Wu X M. Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.). DNA Res, 2014, 21: 355-367.
doi: 10.1093/dnares/dsu002 |
[16] | 荐红举, 魏丽娟, 李超, 唐章林, 李加纳, 刘列钊. 基于SNP遗传图谱定位甘蓝型油菜千粒重QTL位点. 中国农业科学, 2014, 47: 3953-3961. |
Jian H J, Wei L J, Li C, Tang Z L, Li J N, Liu L Z. QTL mapping of 1000-seed weight in Brassica napus L. by using the high density SNP genetic map. Sci Agric Sin, 2014, 47: 3953-3961 (in Chinese with English abstract). | |
[17] | 张晓芳, 张玉良. 我国小麦籽粒容重的研究. 作物品种资源, 1997, 12(2):24-25. |
Zhang X F, Zhang Y L. Studies on the seed density of wheat in our country. Crop Var Res, 1997, 12(2):24-25 (in Chinese with English abstract). | |
[18] | 刘保华, 马永安, 赵勇, 田纪春, 海燕, 杨学举. 普通小麦籽粒比重的QTL分析. 河北农业大学学报, 2013, 36(5):1-5. |
Liu B H, Ma Y A, Zhao Y, Tian J C, Hai Y, Yang X J. QTLs mapping for grain specific gravity in common wheat. J Agric Univ Hebei, 2013, 36(5):1-5 (in Chinese with English abstract). | |
[19] | 王霖, 冯维营, 黄玲, 邵敏敏, 孙雷明, 王洪刚. 小麦容重QTL定位. 山东农业科学, 2014, 46(4):24-27. |
Wang L, Feng W Y, Huang L, Shao M M, Sun L M, Wang H G. QTL mapping for wheat test weight. Shandong Agric Sci, 2014, 46(4):24-27 (in Chinese with English abstract). | |
[20] | 车海先, 李海玉. 玉米容重影响因素浅析. 粮食与食品工业, 2011, 18(1):56-58. |
Che H X, Li H Y. Analysis of influencing factors on maize test weight. Cereal Food Ind, 2011, 18(1):56-58 (in Chinese with English abstract). | |
[21] |
Ding J Q, Ma J L, Zhang C R, Dong H F, Xi Z Y, Xia Z L, Wu J Y. QTL mapping for test weight by using F2:3 population in maize. J Genet, 2011, 90: 75-80.
doi: 10.1007/s12041-011-0036-3 |
[22] | 许理文, 段民孝, 田红丽, 宋伟, 王凤格, 赵久然, 刘保林, 王守才. 基于SNP标记的玉米容重QTL分析. 玉米科学, 2015, 23(5):21-25. |
Xu L W, Duan M X, Tian H L, Song W, Wang F G, Zhao J R, Liu B L, Wang S C. QTL Identification for test weight based on SNP mapping in maize. J Maize Sci, 2015, 23(5):21-25 (in Chinese with English abstract). | |
[23] | 郭晋杰, 韩新桐, 张静, 陈景堂. 基于高密度遗传连锁图谱定位玉米子粒容重及相关性状QTL. 玉米科学, 2018, 26(6):27-32. |
Guo J J, Han X T, Zhang J, Chen J T. High-density genetic linkage map construction and QTL mapping for kernel test weight and related traits in maize. J Maize Sci, 2018, 26(6):27-32 (in Chinese with English abstract). | |
[24] | 刘文博. 大豆籽粒容重与种子萌发的相关性研究. 沈阳农业大学硕士学位论文, 辽宁沈阳, 2018. |
Liu W B. Correlation between Bulk Density and Seed Germination. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning, China, 2018 (in Chinese with English abstract). | |
[25] | Sun C M, Wang B Q, Yan L, Hu K N, Liu S, Zhou Y M, Guan C Y, Zhang Z Q, Li J N, Zhang J F, Chen S, Wen J, Ma C Z, Tu J X, Shen J X, Fu T D, Yi B. Genome-wide association study provides Insight into the genetic control of plant height in rapeseed (Brassica napus L.). Front Plant Sci, 2016, 7: 1102-1114. |
[26] |
Chen L L, Wan H P, Qian J L, Guo J B, Sun C M, Wen J, Yi B, Ma C Z, Tu J X, Song L Q, Fu T D, Shen J X. Genome-wide association study of cadmium accumulation at the seedling stage in rapeseed (Brassica napus L.). Front Plant Sci, 2018, 9: 375-389.
doi: 10.3389/fpls.2018.00375 |
[27] | Xu L P, Hu K N, Zhang Z Q, Guan C Y, Chen S, Hua W, Li J N, Wen J, Yi B, Shen J X, Ma C Z, Tu J X, Fu T D. Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). DNA Res, 2016, 23: 43-52. |
[28] |
Liu S, Fan C C, Li J N, Cai G Q, Yang Q Y, Wu J, Yi X Q, Zhang C Y, Zhou Y M. A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus L. Theor Appl Genet, 2016, 129: 1203-1215.
doi: 10.1007/s00122-016-2697-z |
[29] |
Hatzig S V, Frisch M, Breuer F, Nesi N, Ducourmau S, Wagner M H, Leckband G, Abbdadi A, Snowdon R J. Genome-wide association mapping unravels the genetic control of seed germination and vigor in Brassica napus L. Front Plant Sci, 2015, 6: 221-233.
doi: 10.3389/fpls.2015.00221 pmid: 25914704 |
[30] | 韩光明, 蓝家样, 陈全求, 张胜昔, 李国荣. 一种利用ImageJ软件对棉花种子的计数方法. 棉花科学, 2019, 41(2):2-5. |
Han G M, Lan J Y, Chen Q Q, Zhang S X, Li G R. A method for counting cotton seeds using ImageJ software. Cotton Sci, 2019, 41(2):2-5 (in Chinese with English abstract). | |
[31] |
Qu C M, Li J N, Fu F Y, Zhao H Y, Lu K, Wei L J, Xu X F, Liang Y, Li S M, Wang R, Li J N. Genome-wide association mapping and Identification of candidate genes for fatty acid composition in Brassica napus L. using SNP markers. BMC Genomics, 2017, 18: 232-248.
doi: 10.1186/s12864-017-3607-8 |
[32] |
Wan H P, Chen L L, Guo J B, Li Q, Wen J, Yi B, Ma C Z, Tu J X, Fu T D, Shen J X. Genome-wide association study reveals the genetic architecture underlying salt tolerance-related traits in rapeseed (Brassica napus L.). Front Plant Sci, 2017, 8: 593-607.
doi: 10.3389/fpls.2017.00593 |
[33] |
Bradbury P J, Zhang Z W, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
pmid: 17586829 |
[34] |
Barrett J, Fry B, Maller J, Daly M. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 2005, 21: 263-265.
pmid: 15297300 |
[35] |
Jiang W, Huang H, Hu Y, Zhu S, Wang Z, Lin W. Brassinosteroid regulates seed size and shape in Arabidopsis. Plant Physiol, 2013, 162: 1965-1977.
doi: 10.1104/pp.113.217703 |
[36] |
Footitt S, Cornah J E, Pracharoenwattan A I, Bryce J H, Smith S M. The Arabidopsis 3-ketoacyl-CoA thiolase-2 (kat2-1) mutant exhibits increased flowering but reduced reproductive success. J Exp Bot, 2007, 58: 2959-2968.
pmid: 17728299 |
[37] |
Zhu T, Moschou P N, Alvarezi J M, Sohlberg J J, Von A S. Wuschel-related homeobox 2 is important for protoderm and suspensor development in the gymnosperm norway spruce. BMC Plant Biol, 2016, 16: 19-33.
doi: 10.1186/s12870-016-0706-7 |
[38] |
Garcia D, Fitz G J N, Berger F. Maternal control of integument cell elongation and zygotic control of endosperm growth are coordinated to determine seed size in Arabidopsis. Plant Cell, 2005, 17: 52-60.
doi: 10.1105/tpc.104.027136 |
[39] | Lasserre E, Jobet E, Llauro C, Delseny M. AtERF38 (At2g35700), an AP2/ERF family transcription factor gene from Arabidopsis thaliana, is expressed in specific cell types of roots, stems and seeds that undergo suberization. Plant Physiol Biochem, 2008, 46: 1051-1061. |
[40] |
Kushwaha H, Jillo K W, Singhl V K, Kumar A, Yadav D. Assessment of genetic diversity among cereals and millets based on PCR amplification using Dof (DNA binding with One Finger) transcription factor gene-specific primers. Plant Syst Evol, 2015, 301: 833-840.
doi: 10.1007/s00606-014-1095-8 |
[41] |
Gupta S, Pathak R K, Gupta S M, Gaur V S, Singh N K, Kumar A. Identification and molecular characterization of transcription factor gene family preferentially expressed in developing spikes of Eleusine coracana L. 3 Biotech, 2018, 8: 82.
doi: 10.1007/s13205-017-1068-z |
[42] |
Shani Z, Dekel M, Tsabary G, Shoseyov O. Cloning and characterization of elongation specific endo-1,4-[beta]-glucanase (cel1) from Arabidopsis thaliana. Plant Mol Biol, 1997, 34: 837-842.
pmid: 9290636 |
[43] | Li N, Li Y. Ubiquitin-mediated control of seed size in plants. Front Plant Sci, 2014, 5: 332-337 |
[44] |
Gao M J, Lydiate D J, Li X, Lui H, Gjetvaj B, Hegedus D D, Rozwadowski K. Repression of seed maturation genes by a trihelix transcriptional repressor in Arabidopsis seedlings. Plant Cell, 2009, 21: 54-71.
doi: 10.1105/tpc.108.061309 |
[45] |
Schruff M, Spielman M, Tiwari S, Adams S, Fenby N, Scott R. The anxin response factor 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development, 2006, 133: 251-261.
pmid: 16339187 |
[46] | Salas-Munoz S, Rodriguez-Hernandez A A, Ortega-Amaro M A, Salazar-Badillo F B, Jimenez-Bremont J F. Arabidopsis AtDjA3 null mutant shows increased sensitivity to abscisic acid, salt, and osmotic stress in germination and post-germination stages. Front Plant Sci, 2016, 7: 220-230. |
[47] |
Chen W, Zhang Y, Liu X P, Chen B Y, Tu J X, Fu T D. Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. Theor Appl Genet, 2007, 115: 849-858.
pmid: 17665168 |
[48] |
Brinton J, Simmonds J, Uauy C. Ubiquitin-related genes are differentially expressed in isogenic lines contrasting for pericarp cell size and grain weight in hexaploid wheat. BMC Plant Biol, 2018, 18: 22-28.
doi: 10.1186/s12870-018-1241-5 pmid: 29370763 |
[49] |
Khan S U, Yang M J, Liu S, Zhang K, Khan M H U, Zhai Y G, Olalekan A, Fan C C, Zhou Y M. Genome-wide association studies in the genetic dissection of ovule number, seed number, and seed weight in Brassica napus L. Ind Crops Prod, 2019, 142: 111877.
doi: 10.1016/j.indcrop.2019.111877 |
[50] | 孙程明, 陈锋, 陈松, 彭琦, 张维, 易斌, 张洁夫, 傅廷栋. 甘蓝型油菜每角粒数的全基因组关联分析. 作物学报, 2020, 46: 147-153. |
Sun C M, Chen F, Chen S, Peng Q, Zhang W, Yi B, Zhang J F, Fu T D. Genome-wide association study of seed number per silique in rapeseed (Brassica napus L.). Acta Agron Sin, 2020, 46: 147-153(in Chinese with English abstract). | |
[51] | 任义英, 崔翠, 王倩, 唐章林, 徐新福, 林呐, 殷家明, 李加纳, 周清元. 油菜主花序角果密度及其相关性状的全基因组关联分析. 中国农业科学, 2018, 51: 1020-1033. |
Ren Y Y, Cui C, Wang Q, Tang Z L, Xu X F, Lin N, Yin J M, Li J N, Zhou Q Y. Genome-wide association analysis of silique density on racemes and its component traits in Brassica napus L. Sci Agric Sin, 2018, 51: 1020-1033 (in Chinese with English abstract). | |
[52] | 周庆红, 周灿, 郑伟, 付东辉. 甘蓝型油菜角果长度全基因组关联分析. 中国农业科学, 2017, 50: 228-239. |
Zhou Q H, Zhou C, Zheng W, Fu D H. Genome wide association analysis of silique length in Brassica napus L. Sci Agric Sin, 2017, 50: 228-239 (in Chinese with English abstract). | |
[53] |
Li N, Li Y. Signaling pathways of seed size control in plants. Curr Opin Plant Biol, 2016, 33: 23-32.
doi: 10.1016/j.pbi.2016.05.008 |
[54] | 张雪晶, 江文波, 庞永珍. 植物种子大小调控机制的研究进展. 植物生理学报, 2016, 52: 998-1010. |
Zhang X J, Jiang W B, Pang Y Z. Advances in the regulation mechanism of plant seed size. J Plant Physiol, 2016, 52: 998-1010 (in Chinese with English abstract) |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[3] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[4] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[5] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[6] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[7] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[8] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[9] | 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137. |
[10] | 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823. |
[11] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[12] | 马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析[J]. 作物学报, 2021, 47(7): 1228-1238. |
[13] | 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214. |
[14] | 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123. |
[15] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
|