欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (2): 224-236.doi: 10.3724/SP.J.1006.2021.01042

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦TaPP2-A13基因的表达响应逆境胁迫并与SCF复合体接头蛋白TaSKP1相互作用

孟钰玉1(), 魏春茹1, 范润侨1, 于秀梅1,2,*(), 王逍冬2, 赵伟全2, 魏新燕2, 康振生3, 刘大群2   

  1. 1河北农业大学生命科学学院 / 河北省植物生理与分子病理学重点实验室, 河北保定 071001
    2河北省农作物病虫害生物防治技术创新中心, 河北保定 071001
    3西北农林科技大学植物保护学院 / 旱区作物逆境生物学国家重点实验室, 陕西杨凌 712100
  • 收稿日期:2020-05-12 接受日期:2020-09-13 出版日期:2021-02-12 网络出版日期:2020-09-30
  • 通讯作者: 于秀梅
  • 作者简介:E-mail: 183656991@qq.com
  • 基金资助:
    河北省高等学校科学技术研究项目(ZD2019086);河北省自然科学基金项目(C2020204050);国家自然科学基金项目(31301649);旱区作物逆境生物学国家重点实验室开放课题基金(CSBAAKF2018008)

TaPP2-A13 gene shows induced expression pattern in wheat responses to stresses and interacts with adaptor protein SKP1 from SCF complex

MENG Yu-Yu1(), WEI Chun-Ru1, FAN Run-Qiao1, YU Xiu-Mei1,2,*(), WANG Xiao-Dong2, ZHAO Wei-Quan2, WEI Xin-Yan2, KANG Zhen-Sheng3, LIU Da-Qun2   

  1. 1College of Life Sciences, Hebei Agricultural University / Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding 071001, Hebei, China
    2Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding 071001, Hebei, China
    3College of Plant Protection, Northwest A&F University / State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, Shaanxi, China
  • Received:2020-05-12 Accepted:2020-09-13 Published:2021-02-12 Published online:2020-09-30
  • Contact: YU Xiu-Mei
  • Supported by:
    Higher Education Science and Technology Research Project of Hebei Province(ZD2019086);Natural Science Foundation of Hebei Province(C2020204050);National Natural Science Foundation of China(31301649);Open Research Fund of State Key Laboratory of Crop Stress Biology for Arid Areas(CSBAAKF2018008)

摘要:

为探究韧皮部蛋白2 (Phloem protein 2, PP2)基因在小麦(Triticum aestivum)响应逆境胁迫中的功能及作用机制, 本文以小麦抗叶锈病近等基因系TcLr15为材料获得一个小麦韧皮部蛋白2基因TaPP2-A13。该基因编码一个由298个氨基酸组成的亲水性蛋白质, 相对分子量为33.18 kD, 等电点为6.36。其N端为F-box结构域, C端具有典型的PP2结构域, 属于F-box/PP2 (FBP)亚家族成员。TaPP2-A13与禾本科植物中PP2-A13蛋白的亲缘关系较近。表达模式分析表明, TaPP2-A13的表达受叶锈菌(Puccinia triticina)侵染的诱导, 且感病组合中表达更强。用脱落酸(ABA)、水杨酸(SA)和甲基茉莉酸(MeJA)处理后, TaPP2-A13总体呈现上调表达趋势。利用聚乙二醇(PEG)和H2O2处理后, 小麦TaPP2-A13显著下调表达, 而NaCl处理后TaPP2-A13呈现先上调后下调的表达趋势。亚细胞定位结果表明TaPP2-A13在细胞核和细胞质均有分布。以构建的重组载体BD-TaPP2-A13为诱饵筛选酵母文库, 获得11种可能与TaPP2-A13互作的蛋白, 酵母双杂交(Yeast 2 Hybrid, Y2H)确定其中的5种蛋白TaPP2C5、TaSLY1、TaCHI、TaRbcS和TaSKP1分别与TaPP2-A13存在相互作用。进一步利用BiFC和Co-IP确认TaSKP1与TaPP2-A13两种蛋白质之间的相互作用关系, 推测TaPP2-A13可能为SCF复合体成员。本研究结果为深入解析TaPP2-A13蛋白的功能, 并探究其调控网络奠定了基础。

关键词: 韧皮部蛋白2, 小麦叶锈病, 非生物逆境, 激素, 表达模式, 蛋白互作

Abstract:

To explore the function and molecular mechanism of Phloem protein 2 (PP2) gene in wheat (Triticum aestivum L.) response to stresses, a TaPP2-A13 putatively encoding a PP2 protein was obtained from TcLr15, a wheat near isogenic line against leaf rust pathogen, in the present study. The complete coding region of TaPP2-A13 encodes a hydrophilic polypeptide with molecular weight of 33.18 kD, and theoretical isoelectric point is 6.36. There is an F-box domain at N-terminal and a PP2 domain at C-terminal of the TaPP2-A13 protein sequence, which indicates that wheat TaPP2-A13 belongs to F-box/PP2 (FBP) subfamily. Wheat TaPP2-A13 shared relatively higher sequence similarity with PP2-A13 from Gramineae. Quantitative real-time PCR (qRT-PCR) results indicated that TaPP2-A13 was induced by infection of leaf rust pathogen (Puccinia triticina), and showed stronger expression in susceptible combination than that in resistant one. An obvious up-regulation of TaPP2-A13 was observed after treatment with abscisic acid (ABA), salicylic acid (SA) and methyl jasmonate (MeJA) in wheat. TaPP2-A13 was significantly down-regulated after treatment with PEG and H2O2, while TaPP2-A13 striking increased first, then fell down after NaCl treatment in wheat. Subcellular localization result indicated that TaPP2-A13 distributed in both of the nucleus and cytoplasm. The recombinant vector BD-TaPP2-A13 was used as the bait to screen Yeast 2 Hybrid (Y2H) library, 11 kinds of proteins were finally obtained. Further Y2H assays identified that TaPP2-A13 physically interacted with five kinds of proteins including TaPP2C5, TaSLY1, TaCHI, TaRbcS, and TaSKP1. BiFC and Co-IP results further confirmed that TaPP2-A13 interacted with TaSKP1, an adaptor protein from SKP1-Cullin-F-box (SCF) complex, which made us to speculate that TaPP2-A13 functions as a member of SCF complex by binding with TaSKP1. These findings laid some foundation for further analyzing the function of TaPP2-A13 and exploring its regulatory network.

Key words: phloem protein 2, wheat leaf rust, abiotic stresses, hormone, expression pattern, protein interaction

表1

本实验中涉及的引物信息"

引物名称
Primer name
上游引物序列
Forward primer sequence
(5'-3')
下游引物序列
Reverse primer sequence
(5'-3')
退火温度
Annealing
temperature (℃)
TaPP2-A13-F/R AATGGCGGAATCCCTCGTG CGGGTTTTGGACAAGAATGG 58.0
TaPP2-A13-qPCR-F/R ATCGATGATCGGCGGTATTG AGTGGAGCCGGAAGAGAAGG 59.5
TaGAPDH-qPCR-F/R CTGCCTTGCTCCTCTTGCTAA CTTGATGGAAGGACCAGCAAC 59.5
TaPP2-A13-His-F/R gctgatatcggatccgaattcATGGGGGC GGGGGCTTCG tgcggccgcaagcttgtcgacTTACTTGCGTATGC ACTCCTCG 60.0
TaPP2-A13-GFP-F/R atacaccaaatcgactctagaATGGGGGC GGGGGCTTCG catggtaccggatccactagtCTTGCGTATGCACT CCTCGG 60.0
TaPP2-A13-BD-F/R CGgaatccATGGGGGC ggatccTTACTTGCGTATGCACT 60.0
AD-F/R TAATACGACTCACTATAGGGCG AGATGGTGCACGATGCACAG 56.0
TaPP2-A13-NE-F/R cccaggcctactagtggatccATGGGGGC GGGGGCTTCG agcggtaccctcgaggtcgacCTTGCGTATGCACT CCTCGG 60.0
TaSKP1-FLAG-F/R gagaacacgggggactctagaATGGCGG CCGCGGGAGAC cgtcctaggcttaagtctagaCTCAAAGGCCCACT GGTTCTC 60.0
TaPP2-A13-HA-F/R agacttaagcctaggacgcgtATGGGGGC GGGGGCTTCG AtcgtatgggtacatacgcgtCTTGCGTATGCACT CCTCGG 60.0

图1

TaPP2-A13与其他禾本科植物PP2-A13氨基酸序列比对 黑色框区域为F-box结构域, 灰色框区域为PP2结构域; 所涉及物种为普通小麦、粗山羊草、二穗短柄草、II型少花古尔德草、短花药野生稻、粳稻、哈氏黍、糜子、谷子、狗尾草和玉米。"

图2

植物PP2-A13系统发育树图 进化树外部的实线: 植物PP2-A13蛋白的进化分支; ●: TaPP2-A13蛋白; 所涉及物种为深圳拟兰、小兰屿蝴蝶兰、石斛兰、海枣、油棕榈、食用象腿蕉、野蕉、马拉西亚野生香蕉、罂粟、博落回、银叶玫瑰木、蒺藜苜蓿、麻风树、小垫柳、胡杨树、凤梨、乌拉尔图小麦、弯叶画眉草、短花药野生稻、粳稻、籼稻、玉米、高粱、狗尾草、谷子、II型少花古尔德草、糜子、哈氏黍、二穗短柄草、大麦、普通小麦和粗山羊草。"

图3

不同外源激素处理下小麦TcLr15中TaPP2-A13基因的表达模式 内参基因为TaGAPDH; *表示不同时间点样品与0 h样品相比差异显著(P < 0.05); 误差线为每组处理的标准误差(n = 3)。"

图4

不同生物/非生物胁迫下小麦TcLr15中TaPP2-A13基因的表达模式 内参基因为TaGAPDH; *表示不同时间点样品与0 h样品相比差异显著(P < 0.05); 误差线为每组处理的标准误差(n = 3)。"

图5

TaPP2-A13-GFP融合蛋白的亚细胞定位 绿色表示GFP蛋白在荧光显微镜下所发出的绿色荧光; 标尺为100 μm。"

表2

TaPP2-A13筛选酵母文库的结果"

登录号
Accession No.
蛋白名称
Protein name
克隆数
Number of clones
XP_020153404.1 Protein phosphatase 2C 5 (PP2C5) 1
KU857044.1 S-phase kinase-associated protein 1 (SKP1) 1
XM_020332687.1 UDP-glucose flavonoid 3-O-glucosyl transferase 7-like 3
EMS45698.1 SEC1 family transport protein SLY1 1
XM_020338494.1 3-ketoacyl-CoA thiolase 2, peroxisomal-like 2
LM992844.1 Rca1_beta gene for RUBISCO activase beta (TaRca1_beta) 3
KC776912.1 Ribulose activase A 2
AK330458.1 Ribulose-bisphosphate carboxylase small chain (RbcS) 1
AF251264.1 Ribulose bisphosphate carboxylase activase B (RcaB) 3
AY123222.1 Putative Fe-S precursor protein 2
BAB82472.1 Chitinase 2 1

图6

Y2H验证TaPP2-A13与筛选蛋白间的相互作用"

图7

BiFC验证TaPP2-A13和TaSKP1 的相互作用 绿色表示GFP蛋白在荧光显微镜下所发出的绿色荧光; 标尺为100 μm。"

图8

Co-IP分析本氏烟草叶片中TaPP2-A13与TaSKP1的互作 将烟草总蛋白提取物与带有anti-HA的beads一起孵育, 通过anti-FLAG和anti-HA进行免疫沉淀物分析。"

[1] Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper J W, Elledge S J. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell, 1996,86:263-274.
doi: 10.1016/s0092-8674(00)80098-7 pmid: 8706131
[2] Gonzalez Carranza Z H, Zhang X, Peters J L, Boltz V, Szecsi J, Bendahmane M, Roberts J A. HAWAIIAN SKIRT controls size and floral organ number by modulating CUC1 and CUC2 expression. PLoS One, 2017,12:e0185106.
pmid: 28934292
[3] Levin J Z, Meyerowitz E M. UFO: an Arabidopsis gene involved in both floral meristem and floral organ development. Plant Cell, 1995,7:529-548.
pmid: 7780306
[4] Dharmasiri N, Dharmasiri S, Estelle M. The F-box protein TIR1 is an auxin receptor. Nature, 2005,435:441-445.
doi: 10.1038/nature03543 pmid: 15917797
[5] Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He S Y, Howe G A, Browse J. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling . Nature, 2007,448:661-665.
pmid: 17637677
[6] Sijacic P, Wang X, Skirpan A L, Wang Y, Dowd P E, McCubbin A G, Huang S, Kao T H. Identification of the pollen determinant of S-RNase-mediated self-incompatibility. Nature, 2004,429:302305.
[7] Williams J S, Der J P, dePamphilis C W, Kao T H. Transcriptome analysis reveals the same 17 S-locus F-box genes in two haplotypes of the self-incompatibility locus of Petunia inflata. Plant Cell, 2014,26:2873-2888.
pmid: 25070642
[8] Zhou S M, Sun X D, Yin S H, Kong X Z, Zhou S, Xu Y, Luo Y, Wang W. The role of the F-box gene TaFBA1 from wheat (Triticum aestivum L.) in drought tolerance. Plant Physiol Biochem, 2014,84:213-223.
doi: 10.1016/j.plaphy.2014.09.017 pmid: 25299612
[9] Zhou S M, Kong X Z, Kang H H, Sun X D, Wang W. The involvement of wheat F-box protein gene TaFBA1 in the oxidative stress tolerance of plants. PLoS One, 2015,10:e0122117.
doi: 10.1371/journal.pone.0122117 pmid: 25906259
[10] Zhao Z X, Zhang G Q, Zhou S M, Ren Y Q, Wang W. The improvement of salt tolerance in transgenic tobacco by overexpression of wheat F-box gene TaFBA1. Plant Sci, 2017,259:71-85.
doi: 10.1016/j.plantsci.2017.03.010 pmid: 28483055
[11] Li Q X, Wang W Q, Wang W L, Zhang G Q, Liu Y, Wang Y, Wang W. Wheat F-box protein gene TaFBA1 is involved in plant tolerance to heat stress. Front Plant Sci, 2018,9:521.
doi: 10.3389/fpls.2018.00521 pmid: 29740462
[12] An J P, Li R, Qu F J, You C X, Wang X F, Hao Y J. Apple F-box protein MdMAX2 regulates plant photomorphogenesis and stress response. Front Plant Sci, 2016,7:1685.
doi: 10.3389/fpls.2016.01685 pmid: 27909441
[13] Gou M Y, Su N, Zheng J, Huai J L, Wu G H, Zhao J F, He J G, Tang D Z, Yang S H, Wang G Y. An F-box gene, CPR30, functions as a negative regulator of the defense response in Arabidopsis. Plant J, 2009,60:757-770.
doi: 10.1111/j.1365-313X.2009.03995.x pmid: 19682297
[14] Paquis S, Mazeyrat Gourbeyre F, Fernandez O, Crouzet J, Clément C, Baillieul F, Dorey S. Characterization of a F-box gene up-regulated by phytohormones and upon biotic and abiotic stresses in grapevine. Mol Biol Rep, 2011,38:3327-3337.
doi: 10.1007/s11033-010-0438-y pmid: 21104020
[15] Dinant S, Clark A M, Zhu Y, Vilaine F, Palauqui J C, Kusiak C, Thompson G A. Diversity of the superfamily of phloem lectins (phloem protein 2) in angiosperms. Plant Physiol, 2003,131:114-128.
doi: 10.1104/pp.013086 pmid: 12529520
[16] Li Y Z, Jia F J, Yu Y L, Luo L, Huang J G, Yang G D, Wu C A, Zheng C C. The SCF E3 ligase AtPP2-B11 plays a negative role in response to drought stress in Arabidopsis. Plant Mol Biol Rep, 2014,32:943-956.
[17] Lee J R, Boltz K A, Lee S Y. Molecular chaperone function of Arabidopsis thaliana phloem protein 2-A1, encodes a protein similar to phloem lectin. Biochem Biophys Res Commun, 2014,443:18-21.
doi: 10.1016/j.bbrc.2013.11.034 pmid: 24269669
[18] Read S M, Northcote D H. Subunit structure and interactions of the phloem proteins of Cucurbita maxima (pumpkin). Eur J Biochem, 1983,134:561-569.
doi: 10.1111/j.1432-1033.1983.tb07603.x pmid: 6884347
[19] Liu X F, Zheng Y, Wang P G, Gan Y, Zhang B, Hu Q Y, Du Y, Zhao J W, Liu L H. Transcriptome profiling of periwinkle infected with Huanglongbing (‘Candidatus Liberibacter asiaticus’). Eur J Plant Pathol, 2019,153:891-906.
doi: 10.1007/s10658-018-01607-9
[20] 文庆利, 谢竹, 吴柳, 何永睿, 陈善春, 邹修平. 柑橘响应黄龙病侵染的韧皮部蛋白2基因CsPP2B15的克隆与表达分析. 园艺学报, 2018,45:2347-2357.
Wen Q L, Xie Z, Wu L, He Y R, Chen S C, Zou X P. Clone and expression analysis of the citrus phloem protein 2 gene CsPP2B15 responding to Huanglongbing infection in citru. Acta Hortic Sin, 2018,45:2347-2357 (in Chinese with English abstract).
[21] Guo P G, Zheng Y C, Peng D X, Liu L J, Dai L J, Chen C, Wang B. Identification and expression characterization of the Phloem Protein 2 (PP2) genes in ramie (Boehmeria nivea L. Gaudich). Sci Rep, 2018,8:1-13.
doi: 10.1038/s41598-017-17765-5 pmid: 29311619
[22] Kolmer J A. Virulence heterozygosity and gametic phase disequilibria in two populations of Puccinia recondita (wheat leaf rust fungus). Heredity, 1992,68:505-513.
[23] 孟钰玉, 李虎滢, 许媛, 魏春茹, 范润侨, 于秀梅, 赵伟全, 康振生, 刘大群. 小麦TaSKP2A基因抗逆相关表达分析及与其互作蛋白的筛选. 农业生物技术学报, 2020,28:571-581.
Meng Y Y, Li H Y, Xu Y, Wei C R, Fan R Q, Yu X M, Zhao W Q, Kang Z S, Liu D Q. Anti-stress related expression analysis of TaSKP2A gene in wheat (Triticum aestivum) and its interaction protein screening. J Agric Biotech, 2020,28:571-581 (in Chinese with English abstract).
[24] 许媛. 小麦F-box/LRR类基因Ta-SKP2A的克隆、表达模式分析及其互作靶蛋白筛选. 河北农业大学硕士学位论文, 河北保定, 2016.
Xu Y. Wheat F-box/LRR Like Gene Ta-SKP2A Cloning, Expression Profile Analyzing and Target Proteins Screening. MS Thesis of Hebei Agricultural University, Baoding, Hebei, China, 2016 (in Chinese with English abstract).
[25] Hong M J, Kim D Y, Choi H I, Seo Y W, Kim J B. Isolation and characterization of kelch repeat-containing F-box proteins from colored wheat. Mol Biol Rep, 2020,47:1129-1141.
doi: 10.1007/s11033-019-05210-x pmid: 31907740
[26] Balk J, Lobréaux S. Biogenesis of iron-sulfur proteins in plants. Trends Plant Sci, 2005,10:324-331.
doi: 10.1016/j.tplants.2005.05.002 pmid: 15951221
[27] Fluhr R, Moses P, Morelli G, Coruzzi G, Chua N H. Expression dynamics of the pea rbcS multigene family and organ distribution of the transcripts. EMBO J, 1986,5:2063-2071.
pmid: 16453702
[28] Hao Q, Ren H X, Zhu J, Wang L S, Huang S C, Liu Z A, Gao Z M, Shu Q Y. Overexpression of PSK1, a SKP1-like gene homologue, from Paeonia suffruticosa, confers salinity tolerance in Arabidopsis. Plant Cell Rep, 2017,36:151-162.
pmid: 27787596
[29] Chong J L, Baltz R, Schmitt C, Beffa R, Fritig B, Saindrenan P. Downregulation of a pathogen-responsive tobacco UDP-Glc: phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation, enhances oxidative stress, and weakens virus resistance. Plant Cell, 2002,14:1093-1107.
doi: 10.1105/tpc.010436 pmid: 12034899
[30] Paz G G M, Dolores R, Carlos N, Luis R P, Gregorio N, Oscar L. Negative regulation of abscisic acid signaling by the Fagus sylvatica FsPP2C1 plays a role in seed dormancy regulation and promotion of seed germination. Plant Physiol, 2003,133:135-144.
doi: 10.1104/pp.103.025569 pmid: 12970481
[31] Boller T, Gehri A, Mauch F, Vögeli U. Chitinase in bean leaves: induction by ethylene, purification, properties, and possible function. Planta, 1983,157:22-31.
pmid: 24263941
[32] Jiang T, Zhang X F, Wang X F, Zhang D P. Arabidopsis 3-ketoacyl-CoA thiolase-2 (KAT2), an enzyme of fatty acid β-oxidation, is involved in ABA signal transduction. Plant Cell Physiol, 2011,52:528-538.
doi: 10.1093/pcp/pcr008 pmid: 21257607
[33] 张海龙, 赵潇男, 申哲, 杨孝丽, 张忠阳, 李立新. SM蛋白Sly1家族在膜泡运输中的重要作用. 2015, 北京: 中国科技论文在线, http://www.paper.edu.cn/releasepaper content/ 201503-31.
Zhang H L, Zhao X N, Shen Z, Yang X L, Zhang Z Y, Li L X. SM protein Sly1 family plays an important role in vesicle transport. 2015, Sciencepaper Online, 2015, http://www.paper.edu.cn/releasepaper content/ 201503-31(in Chinese with English abstract).
[34] 李铃仙, 魏春茹, 李虎滢, 魏新燕, 于秀梅. 小麦F-box基因TaFBL14的克隆及表达分析. 西北植物学报, 2017,37:232-238.
Li L X, Wei C R, Li H Y, Wei X Y, Yu X M. Cloning and expression analyses of F-box gene TaFBL14 in wheat. Acta Bot Boreali-occident Sin, 2017,37:232-238 (in Chinese with English abstract).
[35] 许媛, 李铃仙, 魏春茹, 魏新燕, 于秀梅, 刘大群. 小麦Ta-SKP2A克隆及其酵母双杂交诱饵载体的构建. 华北农学报, 2016,31:17-22.
doi: 10.7668/hbnxb.2016.03.002
Xu Y, Li L X, Wei C R, Wei X Y, Yu X M, Liu D Q. Cloning and construction of yeast two-hybrid bait vector of wheat Ta-SKP2A gene. Acta Agric Boreali-Sin, 2016,31:17-22 (in Chinese with English abstract).
[36] 魏春茹, 孟钰玉, 范润侨, 赵梦伊, 于秀梅, 赵伟全, 康振生, 刘大群. 小麦F-box/Kelch类基因TaFKOR23的抗逆相关表达模式及分子互作蛋白鉴定. 植物遗传资源学报, 2020,21:694-704.
Wei C R, Meng Y Y, Fan R Q, Zhao M Y, Yu X M, Liu D Q. Stress-related expression profile of F-box/Kelch gene TaFKOR23 in wheat and molecular characterization of the interacting target protein. J Plant Genet Resour, 2020,21:694-704 (in Chinese with English abstract).
[37] Li X C, Sun Y, Liu N N, Wang P, Pei Y K, Liu D, Ma X W, Ge X Y, Li F G, Hou Y X. Enhanced resistance to verticillium dahliae mediated by an F-box protein GhACIF1 from Gossypium hirsutum. Plant Sci, 2019,284:127-134.
doi: 10.1016/j.plantsci.2019.04.013 pmid: 31084865
[38] Kim H S, Delaney T P. Arabidopsis SON1 is an F-box protein that regulates a novel induced defense response independent of both salicylic acid and systemic acquired resistance. Plant Cell, 2002,14:1469-1482.
doi: 10.1105/tpc.001867 pmid: 12119368
[39] An L K, Ahmad R M, Ren H, Qin J, Yan Y X. Jasmonate signal receptor gene family ZmCOIs restore male fertility and defense response of Arabidopsis mutant coi1-1. J Plant Growth Regul, 2019,38:479-493.
doi: 10.1007/s00344-018-9863-2
[40] Eggermont L, Stefanowicz K, Van Damme E J. Nictaba homologs from Arabidopsis thaliana are involved in plant stress responses. Front Plant Sci, 2018,8:2218.
doi: 10.3389/fpls.2017.02218 pmid: 29375596
[41] Calderón Villalobos L I A, Nill C, Marrocco K, Kretsch T, Schwechheimer C. The evolutionarily conserved Arabidopsis thaliana F-box protein AtFBP7 is required for efficient translation during temperature stress. Gene, 2007,392:106-116.
doi: 10.1016/j.gene.2006.11.016 pmid: 17240087
[42] Xu W Y, Li Z H, Deng X W, Wu W H, Xue Y B. F-box protein DOR functions as a novel inhibitory factor for abscisic acid-induced stomatal closure under drought stress in Arabidopsis. Plant Physiol, 2008,148:2121-2133.
doi: 10.1104/pp.108.126912 pmid: 18835996
[43] Peterson M R, Hsu S C, Scheller R H. A mammalian homologue of SLY1 a yeast gene required for transport from endoplasmic reticulum to Golgi. Gene, 1996,169:293-294.
doi: 10.1016/0378-1119(95)00819-5 pmid: 8647468
[44] 欧阳石文, 赵开军, 冯兰香. 植物中几丁质酶的作用. 生物学通报, 2002,37:13-14.
Ou-Yang S W, Zhao K J, Feng L X. The effect of chitinase in plants. Bull Biol, 2002,6:13-14 (in Chinese).
[45] Melchers L S, de Groot M A, Van Der Knaap J A, Ponstein A S, Sela Buurlage M B, Bol J F, Cornelissen B J, Van Den Elzen P J, Linthorst H J. A new class of tobacco chitinases homologous to bacterial exo-chitinases displays antifungal activity. Plant J, 1994,5:469-480.
pmid: 8012401
[46] Sela Buurlage M B, Ponstein A S, Bres Vloemans S A, Melchers L S, Van den Elzen P J, Cornelissen B J. Only specific tobacco (Nicotiana tabacum) chitinases and [beta]-1,3-glucanases exhibit antifungal activity. Plant Physiol, 1993,101:857-863.
doi: 10.1104/pp.101.3.857 pmid: 12231736
[47] Yamada K, Davydov I I, Besnard G, Salamin N. Duplication history and molecular evolution of the rbcS multigene family in angiosperms. J Exp Bot, 2019,70:6127-6139.
pmid: 31498865
[1] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[2] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[3] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[4] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[5] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[6] 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530.
[7] 黄兴, 习金根, 陈涛, 覃旭, 谭施北, 陈河龙, 易克贤. 剑麻苯丙氨酸裂解酶基因的鉴定及表达分析[J]. 作物学报, 2021, 47(6): 1082-1089.
[8] 李兰兰, 母丹, 严雪, 杨陆可, 林文雄, 方长旬. OsPAL2;3对水稻化感抑制稗草能力的调控作用[J]. 作物学报, 2021, 47(2): 197-209.
[9] 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857.
[10] 于宁宁,张吉旺,任佰朝,赵斌,刘鹏. 综合农艺管理对夏玉米叶片生长发育及内源激素含量的影响[J]. 作物学报, 2020, 46(6): 960-967.
[11] 赵晋锋,杜艳伟,王高鸿,李颜方,赵根有,王振华,王玉文,余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J]. 作物学报, 2020, 46(5): 700-711.
[12] 姜仲禹, 唐丽雪, 柳洪鹃, 史春余. 不同施钾量条件下甘薯块根形成的内源激素变化及其与块根数量的关系[J]. 作物学报, 2020, 46(11): 1750-1759.
[13] 万泽花,任佰朝,赵斌,刘鹏,张吉旺. 不同熟期夏玉米品种籽粒灌浆脱水特性和激素含量变化[J]. 作物学报, 2019, 45(9): 1446-1453.
[14] 王慧敏,李新国,万书波,张智猛,丁红,李国卫,高文伟,彭振英. 花生膜联蛋白基因家族成员的结构和表达分析[J]. 作物学报, 2019, 45(3): 390-400.
[15] 李艳霞,杨卫兵,尹燕枰,郑孟静,陈金,杨东清,骆永丽,庞党伟,李勇,王振林. 小麦小穗不同粒位粒重形成的生理特性差异[J]. 作物学报, 2019, 45(11): 1715-1724.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!