欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (03): 369-375.doi: 10.3724/SP.J.1006.2018.00369

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

一个新的玉米Vp15基因等位突变体的遗传分析与分子鉴定

王瑞1,2,*(), 张秀艳3,*(), 陈阳松2, 杜依聪2, 汤继华1, 王国英2, 郑军2,*()   

  1. 1 河南农业大学农学院, 河南郑州 450002
    2 中国农业科学院作物科学研究所, 北京 100081
    3 中国农业大学生物学院, 北京 100193
  • 收稿日期:2017-08-07 接受日期:2017-11-21 出版日期:2018-03-12 网络出版日期:2017-12-18
  • 通讯作者: 王瑞,张秀艳,郑军
  • 作者简介:

    第一作者联系方式: 王瑞, E-mail: 18612261636@163.com; 张秀艳, E-mail: xyzhang0818@163.com

  • 基金资助:
    本研究由国家重点研发计划项目(2016YFD0101002)和中国农业科学院创新工程专项经费资助

Genetic Analysis and Molecular Characterization of a New Allelic Mutant of Vp15 Gene in Maize

Rui WANG1,2,**(), Xiu-Yan ZHANG3,**(), Yang-Song CHEN2, Yi-Cong DU2, Ji-Hua TANG1, Guo-Ying WANG2, Jun ZHENG2,*()   

  1. 1 College of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
    2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3 School of Life Science, China Agricultural University, Beijing 100193, China
  • Received:2017-08-07 Accepted:2017-11-21 Published:2018-03-12 Published online:2017-12-18
  • Contact: Rui WANG,Xiu-Yan ZHANG,Jun ZHENG
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (2016YFD0101002) and the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences.

摘要:

在玉米繁种过程中发现一个玉米穗发芽突变体(viviparous), 命名为vp-like4。经过连续多代自交发现该突变体性状能稳定遗传, 并且表现为隐性单基因控制。以vp-like4与自交系Mo17杂交构建F2遗传定位群体, 利用BSR-Seq方法, 将目的基因定位于玉米第5染色体173.8~175.6 Mb之间。通过基因组序列信息分析发现, 在此定位区间内存在一个已报道的Vp15基因。Vp15基因编码钼喋呤合酶小亚基, 参与类胡萝卜素裂解为ABA的过程。利用2个独立的vp15突变体vp15-umu1vp15-DR1126的杂合体, 分别与vp-like4突变体杂合体做杂交进行等位测验, 发现杂交后代中正常籽粒与穗发芽籽粒比例符合3∶1分离比。基因组序列分析发现vp-like4突变体中Vp15基因在第2外显子末端及3°非翻译区有60个碱基的缺失, 与所报道的vp15突变体vp15-umu1vp15-DR1126均在第2个外显子有Mutator转座子插入的突变方式不同。进一步通过RT-PCR检测发现, vp-like4突变体中Vp15基因的表达量显著降低。以上实验证据表明, vp-like4是一个新的Vp15基因等位突变体。

关键词: 玉米, 穗发芽, 突变体, Vp15, 基因定位

Abstract:

We identified a new maize viviparous mutant during seed reproduction, designated as vp-like4.This mutant phenotype was steadily inherited and genetically regulated by a single recessive gene. Using an F2 segregation population derived from vp-like4 and inbred line Mo17, we mapped the target gene in an interval from 173.8 to 175.6 Mb on chromosome 5 by the BSR-Seq strategy. Using genomic sequence database, we found that viviparous gene Vp15 is located in this mapping region. The maize Vp15 gene encodes the molybdopterin synthase small subunit, which is required in the process of catalyzing the reaction from carotenoid to ABA. The heterozygous plants from two independent vp15 mutants, vp15-umu1 and vp15-DR1126, were used to cross with vp-like4 heterozygous plants, showing a 3:1 segregation ratio for normal and viviparous kernels. The genomic sequence analysis revealed that vp-like4 mutant had a 60-bp deletion in the second exon and 3’-untranslated region of Vp15 gene, which is different from vp15-umu1 and vp15-DR1126 both mutated from a Mutator transponson inserting in the second exon of Vp15 gene. Further RT-PCR analysis revealed that the expression level of vp15 was significantly lower in vp-like4. Taken together, these evidences suggest that vp-like4 is a new allele mutant from vp15.

Key words: maize, viviparous, mutant, Vp15, gene mapping

表1

本研究所用的引物"

引物
Primer
正向序列
Forward sequence (5°-3°)
反向序列
Reverse sequence (5°-3°)
VP15-G-F1/R1 AAGGACGCGAGAGTTTTTGA GGTGAGCGAGTAACCCATGT
VP15-G-F2/R2 ACATGGGTTACTCGCTCACC CTTCCTGGTAGCGAGACGTG
VP15-G-F3/R3 GCTCGTTCACCATCCAGAAT AGCAAAGCCCTTTCTGAACA
VP15-G-F4/R4 GGGCTTTGCTAAGATGTCTCC GGACAATACATAACTGCTCCCTAAA
VP15-G-F5/R5 TCTTCCACTCTTCCTACCAGCTA AGGAGCCAACAACTGCTGAT
VP15-G-F6/R6 GAACAATCGAGCCTTCTTCG TCGTCCTCCTTGACCACTTC
VP15-G-F7/R7 CACCAACTGCAAGATCGAAA CCAACAGACGTCAACACCAG
VP15-CDS-F1/R1 GGAACTCTCTGATACCTGGCTTT CAGTTCCGTGATTAGCCGC
Zm-GAPDH-F/R CCCTTCATCACCACGGACTAC AACCTTCTTGGCACCACCCT

图1

vp-like4突变体穗发芽表型 A: vp-like4杂合突变体授粉后30 d果穗上正常籽粒和穗发芽籽粒; B:vp-like4杂合突变体授粉后60 d果穗上正常籽粒和穗发芽籽粒; C: 成熟的正常籽粒(WT)和穗发芽籽粒(vp)。标尺=1 cm。"

表2

vp-like4杂合突变体自交授粉后正常籽粒和穗发芽籽粒的分离情况"

年度
Year
地点
Location
植株基因型
Plant genotype
籽粒表型Kernel phenotype
正常籽粒 Normal 穗发芽籽粒 viviparous 总数 Total χ2 (3:1)
2014 海南Hainan vp-like4/+ 355 127 482 0.398
325 111 436 0.027
2016 北京Beijing vp-like4/+ 129 47 176 0.189
225 70 295 0.190

图2

利用BSR-Seq方法对vp-like4突变体基因的初定位"

图3

利用杂合突变体对vp-like4和vp15进行等位测验 A, B: 以vp-like4杂合突变体混粉分别杂交vp15-umu1(A)和vp15-DR1126(B)的果穗上有穗发芽籽粒。C, D: 以vp15-umu1(C)、vp15-DR1126(D)分别混粉杂交vp-like4的果穗上有穗发芽籽粒。"

图4

Vp15基因结构示意图及3个突变体的突变位置"

表3

vp-like4与vp15突变体等位测验"

父母本基因型
Parental genotype
籽粒表型 Kernel phenotype
正常籽粒Normal 穗发芽籽粒viviparous 总数Total χ2 (3:1)
vp-like4/+ × vp15-umu1/+ 217 68 285 0.141
vp-like4/+ ×vp15-DR1126/+ 123 40 163 0.002
vp15-DR1126/+ ×vp-like4/+ 262 83 345 0.116
vp15-umu1/+ ×vp-like4/+ 239 84 323 0.124

图5

实时定量PCR检测Vp15基因分别在3个突变体vp-like4、vp15-umu1、vp15-DR1126中的正常(WT)和穗发芽(vp)籽粒中的表达量"

[1] Mares D, Mrva K, Cheong J, Williams K, Watson B, Storlie E, Zou Y.A QTL located on chromosome 4A associated with dormancy in white-and red-grained wheats of diverse origin.Theor Appl Genet, 2005, 111: 1357-1364
[2] Lohwasser U, Röder M S, Börner A.QTL mapping of the domestication traits pre-harvest sprouting and dormancy in wheat (Triticum aestivum L.). Euphytica, 2005, 143: 247-249
[3] Yang Y, Zhao X L, Xia L Q, Chen X M, Xia, X C, Yu Z, Röder M. Development and validation of a Viviparous-1 STS marker for pre-harvest sprouting tolerance in Chinese wheats.Theor Appl Genet, 2007, 115: 971-980
[4] Fang J, Chai C, Qian Q, Li C, Tang J, Sun L, Huang Z J, Zhang Y, Chu C.Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice.Plant J, 2008, 54: 177-189
[5] Gubler F, Millar A A, Jacobsen J V.Dormancy release, ABA and pre-harvest sprouting.Curr Opin Plant Biol, 2005, 8: 183-187
[6] Hable W E, Oishi K K, Schumaker K S. Viviparous-5 encodes phytoenedesaturase, an enzyme essential for abscisic acid (ABA) accumulation and seed development in maize. Mol Gen Genet, 1998, 257: 167-176
[7] Singh M, Lewis P E, Hardeman K, Bai L, Rose J K, Mazourek M, Brutnell T P.Activator mutagenesis of the pink scutellum1/ viviparous7 locus of maize. Plant Cell, 2003, 15: 874-884
[8] Suzuki M, Latshaw S, Sato Y, Settles A M, Koch K E, Hannah L C, McCarty D R. The maizeViviparous8 locus, encoding a putative ALTERED MERISTEM PROGRAM1-like peptidase, regulates abscisic acid accumulation and coordinates embryo and endosperm development. Plant Physiol, 2008, 146: 1193-1206
[9] Porch T G, Tseung C W, Schmelz E A, Mark Settles, A. The maize Viviparous10/Viviparous13 locus encodes the Cnx1 gene required for molybdenum cofactor biosynthesis. Plant J, 2006, 45: 250-263
[10] Maluf M P, Saab I N, Wurtzel E T, Mark Settles A.The viviparous12 maize mutant is deficient in abscisic acid, carotenoids, and chlorophyll synthesis. J Exp Bot, 1997, 48: 1259-1268
[11] Schwartz S H, Tan B C, Gage D A, Zeevaart J A, McCarty D R. Specific oxidative cleavage of carotenoids by VP14 of maize. Science, 1997, 276: 1872-1874
[12] Suzuki M, Mark Settles A, Tseung C W, Li Q B, Latshaw S, Wu S, McCarty D R. The maize viviparous15 locus encodes the molybdopterin synthase small subunit. Plant J, 2006, 45: 264-274
[13] Li F, Murillo C, Wurtzel E T.Maize Y9 encodes a product essential for 15-cis-ζ-carotene isomerization.Plant Physiol, 2007, 144: 1181-1189
[14] Suzuki M, Kao C Y, Cocciolone S, McCarty D R. Maize VP1 complements Arabidopsis abi3 and confers a novel ABA/auxin interaction in roots. Plant J, 2001, 28: 409-418
[15] Christmann A, Moes D, Himmelbach A, Yang Y, Tang Y, Grill E.Integration of abscisic acid signalling into plant responses.Plant Biol, 2006, 8: 314-325
[16] Sagi M, Fluhr R, Lips S H.Aldehyde oxidase and xanthine dehydrogenase in aflacca tomato mutant with deficient abscisic acid and wilty phenotype.Plant Physiol, 1999, 120: 571-578
[17] Schwartz S H, Leon-Kloosterziel K M, Koornneef M, Zeevaart J A. Biochemical characterization of the aba2 and aba3 mutants in Arabidopsis thaliana. Plant Physiol, 1997, 114: 161-166
[18] Bittner F, Oreb M, Mendel R R.ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. J Biol Chem, 2001, 276: 40381-40384
[19] Xiong L, Ishitani M, Lee H, Zhu J K.The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell, 2001, 13: 2063-2083
[20] Mendel R R, Hänsch R.Molybdoenzymes and molybdenum cofactor in plants.J Exp Bot, 2002, 53: 1689-1698
[21] Liu S, Yeh C T, Tang H M, Nettleton D, Schnable P S.Gene mapping via bulked segregant RNA-Seq (BSR-Seq).PLoS One, 2012, 7: e36406
[22] 王关林, 方宏筠. 植物基因工程(第2版). 北京: 科学出版社, 2002. pp 742-744
Wang G L, Fang H J. Plant Genetic Engineering, 2nd edn. Beijing: Science Press, 2002. pp 742-744 (in Chinese)
[23] Schneeberger K, Ossowski S, Lanz C, Juul T, Petersen A H, Nielsen K L, Andersen S U.SHOREmap: simultaneous mapping and mutation identification by deep sequencing.Nat Methods, 2009, 6: 550-551
[24] 杨守萍, 盖钧镒, 邱家驯. 大豆雄性不育突变体 NJ89-1核雄性不育基因的等位性测验. 作物学报, 2003, 29: 372-378
Yang S P, Gai J Y, Qiu J X.Allelism tests of the male sterile gene of the mutant NJ89-1 in soybeans.Acta Agron Sin, 2003, 29: 372-378 (in Chinese with English abstract)
[25] Lyu H K, Zheng J, Wang T Y, Fu J, Huai J, Min H W, Wang G Y.The maize d2003, a novel allele of VP8, is required for maize internode elongation. Plant Mol Biol, 2014, 84: 243-257
[26] Rudolph M J, Wuebbens M M, Turque O, Rajagopalan K V, Schindelin H.Structural studies of molybdopterin synthase provide insights into its catalytic mechanism.J Biol Chem, 2003, 278: 14514-14522
[27] Rudolph M J, Johnson J L, Rajagopalan K V, Kisker C.The 1.2 Å structure of the human sulfite oxidase cytochrome b5 domain.Acta Crystall Sect D: Biol Crystall, 2003, 59: 1183-1191
[28] Stallmeyer B, Drugeon G, Reiss J, Haenni A L, Mendel R R.Human molybdopterin synthase gene: identification of a bicistronic transcript with overlapping reading frames.Am J Human Genet, 1999, 64: 698-705
[29] Leimkühler S, Freuer A, Araujo J A S, Rajagopalan K V, Mendel R R. Mechanistic studies of human molybdopterin synthase reaction and characterization of mutants identified in group B patients of molybdenum cofactor deficiency.J Biol Chem, 2003, 278: 26127-26134
[30] Rudolph M J, Wuebbens M M, Rajagopalan K V, Schindelin H.Crystal structure of molybdopterin synthase and its evolutionary relationship to ubiquitin activation. Nat Structural & Mol Biol, 2001, 8: 42
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[4] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[9] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[10] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[11] 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885.
[12] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[13] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[14] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[15] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!