Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (11): 1682-1691.doi: 10.3724/SP.J.1006.2015.01682
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
FENG Lu1,2,ZHONG Li2,3,CHEN Dan-Dan4,MA You-Zhi2,XU Zhao-Shi2,LI Lian-Cheng2,ZHOU Yong-Bin2,CHEN Ming2,*,ZHANG Xiao-Hong1,*
[1]Agarwal S, Pandey V. Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biol Plant, 2004, 48: 555–560[2]Niu X M, Narasimhan M L, Salzman R A, Bressan R A, Hasegawa P M. NaCl regulation of plasma membrane H+-ATPase gene expression inaglycophyte and halophyte. Plant Physiol, 1993, 103: 713–718[3]Zhu J K. Plant salt tolerance. Trends Plant Sci, 2001, 6: 66–71[4]Li P H, Chen M, Wang B S. Effect of K+ nutrition on growth and activity of leaf tonoplast V-H+-ATPase and V-PPase of suaed salsa under NaCl stress. Acta Bot Sin, 2002, 44: 433–440[5]Sze H, Schumacher K, Müller LM, Padmanaban S, Taiz L. A simple nomenclature for a complex proton pump: VHA genes encode the vacuolar H+-ATPase. Trends Plant Sci, 2002, 7: 157–161[6]Kluge C, Lahr L, Hanitzsch L, Bolte S, Golldack D, Dietz K J. New insight into the structure and regulation of the plant vacuolar V-ATPase. J Bioenerg Biomemb, 2003, 35: 377–388[7]Omri D, Felix F, Nelson N. Crystal structure of yeast V-ATPase subunit C reveals its stator function. EMBO Rep, 2004, 5: 1148–1152[8]Dettmer J, Liu T Y, Schumacher K. Functional analysis of Arabidopsis V-ATPase subunit VHA-E isoforms. Eur J Cell Biol, 2010, 89: 152–156[9]Dietz K J, Tavakoli N, Kluge C, Mimura T, Sharma S S, Harris G C, Chardonnens A N, Golldack D. Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. J Exp Bot, 2001, 52: 1969–1980[10]Wang B S, Lttge U, Ratajczak R. Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. J Exp Bot, 2001, 52: 2355–2365[11]夏朝晖, 陈珈. 胁迫反应中的液泡膜H+-ATPase. 植物生理学通讯, 1998, 34: 168–174Xia Z H, Chen J. Type H+-ATPase in responses to stresses. 1998, 34: 168–174 (in Chinese)[12]He X, Huang X, Shen Y, Huang Z. Wheat V-H+-ATPase subunit genes significantly affect salt tolerance in Arabidopsis thaliana. PLoS One, 2014, 9: e86982[13]Zhang X H, Li B, Hu Y G, Chen L, Min D H. The wheat E subunit of V-type H+-ATPase is involved in the plant response to osmotic stress. Intl J Mol Sci, 2014, 15: 16196–16210[14]Barton L, Newsome S D, Chen F H, Wang H, Guilderson T P, Bettinger R L. Agricultural origins and the isotopic identity of domestication in northern China. Proc Natl Acad Sci USA, 2009, 106: 5523–5528[15]Bettinger R L, Barton L, Morgan C. The origins of food production in north China: a different kind of agricultural revolution. Evol Anthropol, 2010, 19: 9–21[16]Doust A N, Kellogg E A, Devos K M, Bennetzen J L. Foxtail millet: a sequence-driven grass model system. Plant Physiol, 2009, 149: 137–141[17]Brutnell T P, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu X G, Kellogg E, Van Eck J. Setariaviridis: a model for C4 photosynthesis. Plant Cell, 2010, 22: 2537–2544[18]Li P, Brutnell T P. Setariaviridis and Setariaitalica, model genetic systems for the Panicoid grasses. J Exp Bot, 2011, 62: 3031–3037[19]Lata C, Gupta S, Prasad M. Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Crit Rev Biotechnol, 2013, 33: 328–343[20]Yoo S D, Cho Y H, Sheen J. Arabidopsis mesophyll protoplasts:a versatile cell system for transient gene expression analysis. Nat Prot, 2007, 2: 1565–1572[21]Xu Z S, Ni Z Y, Liu L, Nie L N, Li L C, Chen M, Ma Y Z. Characterization of the TaAI DFagene encoding a CRT/DRE-binding factor responsive to drought, high-salt, and cold stress in wheat. Mol Genet Genom, 2008, 280: 497–508[22]Ding L, Zhu J K. Reduced Na+ uptake in the NaCl-hypersensitive sos1 mutant of Arabidopsis thaliana. Plant Physiol, 1997, 113: 795–799[23]李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 119–263Li H S. Principle and Technology of Plant Physiology and Biochemistry Experiment. Beijing: Higher Education Press, 2000. pp 119–263 (in Chinese)[24]Zhao Q, Zhao Y J, Zhao B C, Ge R C, Li M, Shen Y Z, Huang Z J. Cloning and functional analysis of wheat V-H+-ATPase subunit genes. Plant Mol Biol, 2009, 69: 33–46[25]Ratajczak R. Structure, function and regulation of the plant vacuolar H+-translocating ATPase. Biochim Biophys Acta, 2000, 1465: 17–36[26]Chinnusamy V, Zhu J H, Zhu J K. Salt stress signaling and mechanismas of plant salt tolerance. Genet Engin, 2006, 27: 141–177[27]Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol, 1980, 31: 149–190[28]Barkla B J, Zingarelli L, Blumwald E, Smith J A C. Tonoplast Na+/H+ antiport activity and itsenergization by the vacuolar H+-ATPase in the hallophytic plant Mesembryanthemum crystallinum L. Plant Physiol, 1995, 109: 549–556[29]Janicka-Russak M, K?obus G. Modification of plasmamembrane and vacuolar H+-ATPasesin response to NaCl and ABA. J Plant Physiol, 2007, 164: 295–302[30]Zhi R, To P. Function of transport H+-ATPases in plant cell plasma and vacuolar membranes of maize under salt stress conditions and effect of adaptogenic preparations. Ukrainski? Biokhimicheski? Zhurnal, 2011, 83: 63–68[31]Kasai M, Yamamoto Y, Maeshima M, Matsumoto H. In vivo treatment barley roots with vanadate increases vacuolar H+-translocating ATPase activity of the tonoplast-enriched membrane vesicles and the level of endogenous ABA. Plant Cell Physiol, 1994, 35: 291–295[32]Bray E A. Plant responses to water deficit. Ttends Plant Sci, 1997, 2: 48–54[33]Schroeder J I, Allen G J, Hugouvieux V, Kwak J M, Waner D. Guard cell signal tranduction. Annu Rev Plant Physiol Plant Mol Biol, 2001, 52: 627–65.[34]Gaxiola R A, Li J S, Undurraga S, Dang L M, Allen G J, Alper S L, Fink G R. Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci USA, 2001, 98: 11444–11449[35]Krebs M, Beyhl D, Gorlich E, Al-Rasheid A S, Marten I, Stierhof Y D, Hedrich R, Schumacher K. Arabidopsis, V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation. Proc Natl Acad Sci USA, 2010, 107: 3251–3256 |
[1] | YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050. |
[2] | ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058. |
[3] | LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62. |
[4] | LYU Dong-Mei, ZHU Guang-Long, WANG Yue, SHI Yu, LU Fa-Guang, REN Zhen, LIU Yu-Qian, GU Li-Feng, LU Hai-Tong, Irshad Ahmad, JIAO Xiu-Rong, MENG Tian-Yao, ZHOU Gui-Sheng. Growth, physiological, and heavy metal accumulation traits at seedling stage under heavy metal stress in castor (Ricinus communis L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 728-737. |
[5] | HUO Dong-Ying,ZHENG Wei-Jun,LI Pan-Song,XU Zhao-Shi,ZHOU Yong-Bin,CHEN Ming,MA You-Zhi,MIN Dong-Hong,ZHANG Xiao-Hong. Identification, Classification, and Drought Response of F-box Gene Family in Foxtail Millet [J]. Acta Agron Sin, 2014, 40(09): 1585-1594. |
[6] | CHEN Jie,GUO Tian-Wen,TAN Xue-Lian,ZHU Wei-Bing,WEI Xiao-Li,WANG Dong-Sheng,XUE Quan-Hong. Comparison of Microecological Characterization in Rhizosphere Soil between Healthy and Un-healthy Plants in Continuous Cropping Potato Fields [J]. Acta Agron Sin, 2013, 39(11): 2055-2064. |
[7] | XU Jing, WANG Li, QIAN Qian, ZHANG Guang-Heng. Research Advance in Molecule Regulation Mechanism of Leaf Morphogenesis in Rice (Oryza sativa L.) [J]. Acta Agron Sin, 2013, 39(05): 767-774. |
[8] | XU Li,ZHU Long-Fu,ZHANG Xian-Long. Research on Resistance Mechanism of Cotton to Verticillium Wilt [J]. Acta Agron Sin, 2012, 38(09): 1553-1560. |
[9] | LIU Li-Jun,WANG Kang-Jun,Ge Li-Li,FAN Miao-Miao,ZHANG Zi-Chang,WANG Zhi-Qin,YANG Jian-Chang. Relationship between Characteristics of Basal Internodes and Lodging and Its Physiological Mechanism in Dry-cultivated Rice [J]. Acta Agron Sin, 2012, 38(05): 848-856. |
[10] | ZHAO Long-Fei,LI Chao-Hai,LIU Tian-Xue,WANG Xiu-Ping,SENG Shan-Shan,PAN Xu. Genotypic Responses and Physiological Mechanisms of Maize (Zea mays L.) to High Temperature Stress during Flowering [J]. Acta Agron Sin, 2012, 38(05): 857-864. |
[11] | DUAN Hua, SHU Zheng-Hua, XU Yun-Ji, WANG Zhi-Qin, LIU Li-Jun, YANG Jian-Chang. Role of Irrigation Patterns in Reducing Harms of High Temperature to Rice [J]. Acta Agron Sin, 2012, 38(01): 107-120. |
[12] | ZHANG Hong-Cheng, TUN Gui-Cheng, DAI Ji-Gen, HE Zhong-Xiang, HU Ke, GAO Hui, WEI Hai-Yan, LV Xiu-Chao, MO Jing-Jun, HUANG Yin-Zhong. Precise Postponing Nitrogen Application and Its Mechanism in Rice [J]. Acta Agron Sin, 2011, 37(10): 1837-1851. |
[13] | XIAO Xin-Hui, LI Xiang-Hua, LIU Xiang, ZHANG Ying, WANG Ke-Jing. Difference of Ion Accumulation in Wild Soybean (Glycine soja) under High Saline-alkali Stress [J]. Acta Agron Sin, 2011, 37(07): 1289-1300. |
[14] | YANG Jian-Chang. Mechanism and Regulation in the Filling of Inferior Spikelets of Rice [J]. Acta Agron Sin, 2010, 36(12): 2011-2019. |
[15] | ZHANG Hong-Cheng, WU Gui-Cheng, LI De-Jian, XIAO Yue-Cheng, GONG Jin-Long, LI Jie, DAI Qi-Gen, HE Zhong-Yang, XU Ke, GAO Hui, WEI Hai-Yan, SHA An-Qi, ZHOU You-Tan, WANG Bao-Jin, WU Ai-Guo. Population Characteristics and Formation Mechanism for Super-High- Yielding Hybrid Japonica Rice (13.5 t hm-2) [J]. Acta Agron Sin, 2010, 36(09): 1547-1558. |
|