[1]Agarwal S, Pandey V. Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biol Plant, 2004, 48: 555–560
[2]Niu X M, Narasimhan M L, Salzman R A, Bressan R A, Hasegawa P M. NaCl regulation of plasma membrane H+-ATPase gene expression inaglycophyte and halophyte. Plant Physiol, 1993, 103: 713–718
[3]Zhu J K. Plant salt tolerance. Trends Plant Sci, 2001, 6: 66–71
[4]Li P H, Chen M, Wang B S. Effect of K+ nutrition on growth and activity of leaf tonoplast V-H+-ATPase and V-PPase of suaed salsa under NaCl stress. Acta Bot Sin, 2002, 44: 433–440
[5]Sze H, Schumacher K, Müller LM, Padmanaban S, Taiz L. A simple nomenclature for a complex proton pump: VHA genes encode the vacuolar H+-ATPase. Trends Plant Sci, 2002, 7: 157–161
[6]Kluge C, Lahr L, Hanitzsch L, Bolte S, Golldack D, Dietz K J. New insight into the structure and regulation of the plant vacuolar V-ATPase. J Bioenerg Biomemb, 2003, 35: 377–388
[7]Omri D, Felix F, Nelson N. Crystal structure of yeast V-ATPase subunit C reveals its stator function. EMBO Rep, 2004, 5: 1148–1152
[8]Dettmer J, Liu T Y, Schumacher K. Functional analysis of Arabidopsis V-ATPase subunit VHA-E isoforms. Eur J Cell Biol, 2010, 89: 152–156
[9]Dietz K J, Tavakoli N, Kluge C, Mimura T, Sharma S S, Harris G C, Chardonnens A N, Golldack D. Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. J Exp Bot, 2001, 52: 1969–1980
[10]Wang B S, Lttge U, Ratajczak R. Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. J Exp Bot, 2001, 52: 2355–2365
[11]夏朝晖, 陈珈. 胁迫反应中的液泡膜H+-ATPase. 植物生理学通讯, 1998, 34: 168–174
Xia Z H, Chen J. Type H+-ATPase in responses to stresses. 1998, 34: 168–174 (in Chinese)
[12]He X, Huang X, Shen Y, Huang Z. Wheat V-H+-ATPase subunit genes significantly affect salt tolerance in Arabidopsis thaliana. PLoS One, 2014, 9: e86982
[13]Zhang X H, Li B, Hu Y G, Chen L, Min D H. The wheat E subunit of V-type H+-ATPase is involved in the plant response to osmotic stress. Intl J Mol Sci, 2014, 15: 16196–16210
[14]Barton L, Newsome S D, Chen F H, Wang H, Guilderson T P, Bettinger R L. Agricultural origins and the isotopic identity of domestication in northern China. Proc Natl Acad Sci USA, 2009, 106: 5523–5528
[15]Bettinger R L, Barton L, Morgan C. The origins of food production in north China: a different kind of agricultural revolution. Evol Anthropol, 2010, 19: 9–21
[16]Doust A N, Kellogg E A, Devos K M, Bennetzen J L. Foxtail millet: a sequence-driven grass model system. Plant Physiol, 2009, 149: 137–141
[17]Brutnell T P, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu X G, Kellogg E, Van Eck J. Setariaviridis: a model for C4 photosynthesis. Plant Cell, 2010, 22: 2537–2544
[18]Li P, Brutnell T P. Setariaviridis and Setariaitalica, model genetic systems for the Panicoid grasses. J Exp Bot, 2011, 62: 3031–3037
[19]Lata C, Gupta S, Prasad M. Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Crit Rev Biotechnol, 2013, 33: 328–343
[20]Yoo S D, Cho Y H, Sheen J. Arabidopsis mesophyll protoplasts:a versatile cell system for transient gene expression analysis. Nat Prot, 2007, 2: 1565–1572
[21]Xu Z S, Ni Z Y, Liu L, Nie L N, Li L C, Chen M, Ma Y Z. Characterization of the TaAI DFagene encoding a CRT/DRE-binding factor responsive to drought, high-salt, and cold stress in wheat. Mol Genet Genom, 2008, 280: 497–508
[22]Ding L, Zhu J K. Reduced Na+ uptake in the NaCl-hypersensitive sos1 mutant of Arabidopsis thaliana. Plant Physiol, 1997, 113: 795–799
[23]李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 119–263
Li H S. Principle and Technology of Plant Physiology and Biochemistry Experiment. Beijing: Higher Education Press, 2000. pp 119–263 (in Chinese)
[24]Zhao Q, Zhao Y J, Zhao B C, Ge R C, Li M, Shen Y Z, Huang Z J. Cloning and functional analysis of wheat V-H+-ATPase subunit genes. Plant Mol Biol, 2009, 69: 33–46
[25]Ratajczak R. Structure, function and regulation of the plant vacuolar H+-translocating ATPase. Biochim Biophys Acta, 2000, 1465: 17–36
[26]Chinnusamy V, Zhu J H, Zhu J K. Salt stress signaling and mechanismas of plant salt tolerance. Genet Engin, 2006, 27: 141–177
[27]Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol, 1980, 31: 149–190
[28]Barkla B J, Zingarelli L, Blumwald E, Smith J A C. Tonoplast Na+/H+ antiport activity and itsenergization by the vacuolar H+-ATPase in the hallophytic plant Mesembryanthemum crystallinum L. Plant Physiol, 1995, 109: 549–556
[29]Janicka-Russak M, K?obus G. Modification of plasmamembrane and vacuolar H+-ATPasesin response to NaCl and ABA. J Plant Physiol, 2007, 164: 295–302
[30]Zhi R, To P. Function of transport H+-ATPases in plant cell plasma and vacuolar membranes of maize under salt stress conditions and effect of adaptogenic preparations. Ukrainski? Biokhimicheski? Zhurnal, 2011, 83: 63–68
[31]Kasai M, Yamamoto Y, Maeshima M, Matsumoto H. In vivo treatment barley roots with vanadate increases vacuolar H+-translocating ATPase activity of the tonoplast-enriched membrane vesicles and the level of endogenous ABA. Plant Cell Physiol, 1994, 35: 291–295
[32]Bray E A. Plant responses to water deficit. Ttends Plant Sci, 1997, 2: 48–54
[33]Schroeder J I, Allen G J, Hugouvieux V, Kwak J M, Waner D. Guard cell signal tranduction. Annu Rev Plant Physiol Plant Mol Biol, 2001, 52: 627–65.
[34]Gaxiola R A, Li J S, Undurraga S, Dang L M, Allen G J, Alper S L, Fink G R. Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci USA, 2001, 98: 11444–11449
[35]Krebs M, Beyhl D, Gorlich E, Al-Rasheid A S, Marten I, Stierhof Y D, Hedrich R, Schumacher K. Arabidopsis, V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation. Proc Natl Acad Sci USA, 2010, 107: 3251–3256 |