欢迎访问作物学报,今天是

作物学报 ›› 2008, Vol. 34 ›› Issue (08): 1323-1329.doi: 10.3724/SP.J.1006.2008.01323

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦转录因子TaMyb2s的克隆及表达

贾东升1,2;毛新国2;景蕊莲2,*;张晓科1;昌小平2   

  1. 1 西北农林科技大学农学院, 陕西杨凌712100; 2 中国农业科学院作物科学研究所 / 农作物基因资源与遗传改良国家重大科学工程 / 农业部作物种质资源与生物技术重点开放实验室, 北京100081
  • 收稿日期:2008-01-02 修回日期:1900-01-01 出版日期:2008-08-12 网络出版日期:2008-08-12
  • 通讯作者: 景蕊莲

Cloning and Expression of Transcription Factor TaMyb2s in Wheat

JIA Dong-Sheng12,MAO Xin-Guo2,JING Rui-Lian2*,ZHANG Xiao-Ke1,CHANG Xiao-Ping2   

  1. 1 College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi; 2 National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Crop Germplasm & Biotechnology, Ministry of Agriculture / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2008-01-02 Revised:1900-01-01 Published:2008-08-12 Published online:2008-08-12
  • Contact: JING Rui-Lian

摘要: 利用小麦TaMyb2基因特异引物, 克隆了3种类型TaMyb2的cDNA序列, 分别命名为TaMyb2-ITaMyb2-IITaMyb2-III。氨基酸序列比对结果表明, TaMyb2s的序列高度相似。系统进化树分析显示, TaMyb2s与来自大麦、水稻等的直系同源基因编码蛋白的亲缘关系较近; TaMyb2s的3种类型与小麦基因组没有明显的对应关系。实时定量PCR检测结果表明, 小麦幼苗中的TaMyb2s均参与对渗透胁迫的应答反应, 但表达模式不尽相同, TaMyb2-III对渗透胁迫的应答最迅速, TaMyb2-I次之, TaMyb2-II最迟缓。从小麦不同发育时期幼嫩组织中TaMyb2s的表达情况推测, TaMyb2-ITaMyb2-III可能主要在生长发育的前期调控下游基因, 而TaMyb2-II主要在发育后期发挥作用。

关键词: 小麦, MYB转录因子, 基因克隆, 非生物胁迫, 基因表达

Abstract: MYB, one of the biggest transcription factor families, plays a crucial role in regulating cellular morphogenesis, secondary metabolism, responding to hormone and stress signals in plants. Several MYB transcription factors were involved in response to various abiotic stresses, such as drought, salinity, and low temperature. In this study, Hanxuan 10, a wheat (Triticum aestivum) cultivar with strong drought resistance, was employed to clone MYB gene using specific primers of TaMyb2. Three types of cDNA with high identities of 95.3%, 95.0%, and 99.6% to TaMyb2 were obtained, and designated TaMyb2-I, TaMyb2-II, and TaMyb2-III, respectively. Structure analysis indicated that the 3 types of TaMyb2 gene contained 2 MYB DNA-binding domains, and classified to R2R3-MYB sub-family. Phylogenetic analysis based on the putative amino acid sequences indicated that TaMyb2 were closer to HvMYB4 and OsMYB4 originated from barley and rice, respectively, while had less relations to ZmMYB39 from maize (Zea mays), AtMYB15 from Arabidopsis and NtMYB1 from tobacco (Nicotiana tabacum). No corre-sponding relationships were observed between the TaMyb2s and A, B, D genomes of common wheat according to phylogenetic analysis of common wheat and its relative species T. urartu, Aegilops speltoides, Ae. tauschii, T. dicoccoides, and T. araraticum. The different expression patterns of TaMyb2s were observed using real-time quantitative PCR methods, though all the 3 types were associated with osmotic stress. TaMyb2-III was the most sensitive to hyperosmolality, followed by TaMyb2-I. In addition, the differential expression levels of TaMyb2s were detected in tender tissues at different developmental stages in wheat. The highest expression level of TaMyb2s was identified at seedling stage, especially in seedling roots, and then decreased gradually from seedling to heading stage. High expression levels of TaMyb2-I and TaMyb2-III only presented before jointing stage, while TaMyb2-II held about 2 folds till heading stage.

Key words: Wheat, MYB transcription factor, Gene cloning, Abiotic stress, Gene expression

[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[3] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[4] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[5] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[6] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[7] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[8] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[9] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[10] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[11] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[12] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[13] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[14] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[15] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!