作物学报 ›› 2008, Vol. 34 ›› Issue (12): 2070-2076.doi: 10.3724/SP.J.1006.2008.02070
毛建军;邱德文*;杨秀芬;曾洪梅;袁京京
MAO Jian-Jun,QIU De-Wen*,YANG Xiu-Feng,ZENG Hong-Mei,YUAN Jing-Jing
摘要:
通过根癌农杆菌(Agrobactrium tumefaciens)介导转化法,将含有稻瘟菌蛋白激发子基因pemG1的植物表达载体pCAMBIA2300-Ubi-pemG1-Ocs转化三生烟(Nicotiana tobacum cv. Samsun NN),获得了转基因植株。用PCR检测抗卡那霉素烟苗确认阳性转化株,用Southern、Northern和Western杂交进一步证实了pemG1基因的整合、转录和表达。对T2代转基因阳性株进行烟草花叶病毒(Tobacco Mosaic Virus)接种试验。接种5 d后发现,与非转基因对照相比,表达pemG1的烟草叶片枯斑数量减少,表明稻瘟菌蛋白激发子基因pemG1的表达提高了转基因烟草对TMV的抗性。
[1]Michael G H. Microbial elicitors and their receptors in plants. Ann Rev Phytopathol, 1996, 34: 387-412 [2]Darvill A G, Albersheim P. Phytoalexins and their elicitors-a defense against microbial infection in plants. Annu Rev Plant Physiol, 1984, 35: 243-293 [3]Templeton M D, Lamb C J. Elicitors and defense gene activa-tion. Plant Cell Environ, 1988, 11: 395-401 [4]Wei Z M, Laby R J, Zumoff C H, Bauer D W, He S Y, Collmer A, Beer S V. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science, 1992, 257: 85-88 [5]Baker C J, Orlandi E W, Mock N M. Harpin, an elicitor of the hypersensitive response in tobacco caused by Erwinia amy-lovora, elicit active oxygen production in suspension cells. Plant Physiol, 1993, 102: 1341-1344 [6]Ricci P, Bonnet P, Huet J C, Sallantin M, Beauvais C F, Bru-neteau M, Billard V, Michel G, Pernollet J C. Structure and activity of proteins from pathogenic fungi Phytophthora eli- citing necrosis and acquired resistance in tobacco. Eur J Bio-chem, 1989, 183: 555-563 [7]Baillieul F, Genetat I, Kopp M, Saindrenan P, Fritig B, Kauffrnann S. A new elicitor of the hypersensitive response in tobacco: A fungal glycoprotein elicits cell death, expression of defense genes, production of salicylic acid, and induction of systemic acquired resistance. Plant J, 1995, 8: 551-560 [8]Nespoulous C, Huet J C, Pernollet J C. Structure-function re-lationships of α and β elicitins signal proteins involved in the plant—Phytophthora interaction. Planta, 1992, 186: 551-557 [9]Huet J C, Nespoulous C, Pernollet J C. Structure of elicitin isoforms secreted by Phytophthora dreschleri. Phytochemis-try, 1992, 31: 1471-1476 [10]Boissy G, De L F, Kahn R, Huet J C, Bridogne G, Pernollet J C, Brunie S. Crytal structure of a fungal elicitor secreted by Phytophthora cryptogea, a member of a novel class of plant necrotic protein. Structure, 1996, 4: 1429-1432 [11]Ricci P, Trentin F, Bonnet P, Vemond P, Mouton-Perronet F, Bnuneteau M. Differential production of parasiticein, an elicitor of necrosis an d resistance in tobacco, by isolates of Phytophthora parasitica. Plant Pathol, 1992, 41: 298-307 [12]Zhang H-M(张宏明), Cai Y-Y(蔡以滢), Chen J(陈珈). Elici-tation of the hypersensitive responses in tabacco by a 10.6 kD proteinaceous elicitor from Phytophthora palmi. Acta Bot Sin (植物学报), 1999, 41(11): 1183-1186(in Chinese with Eng-lish abstract) [13]Zhang Z-G(张正光), Wang Y-C(王源超), Zheng X-B(郑小波). Bioactivity and stability of 90 kD extracellular protein elicitor from Phytophthora boehmeriae. Acta Phytopathol Sin (植物病理学报), 2001, 31(3): 213-218(in Chinese with Eng-lish abstract) [14]Qiu D-W(邱德文). Microbe protein pesticide and its prospect. Chin J Biol Control (中国生物防治), 2004, 20(2): 91-94(in Chinese with English abstract) [15]Qiu D-W(邱德文), Xiao Y-L(肖友伦), Yao Q(姚庆), Li L(李丽), Liu Z(刘峥). Effect of activator protein on cucumber growth and the activities of dehydrogenase, peroxidase and phenylalanine ammonia lyase. Chin J Biol Control (中国生物防治), 2005, 21(1): 41-44(in Chinese with English abstract) [16]Xu F(徐锋), Yang Y(杨勇), Xie F-J(谢馥交), Liu Z(刘铮), Qiu D-W(邱德文), Yang X-F(杨秀芬). Effect of the activator protein from magnaporthe grisea on plant growth and physiological activities. Acta Agric Boreali-Sin (华北农学报), 2006, 21(5): 1-5(in Chinese with English abstract) [17]Shao M(邵敏), Wang J-S(王金生). Transformation of rice with hrfA gene and resistance of the transgenic plant to bacte-rial leaf blight. J Nanjing Agric Univ (南京农业大学学报), 2004, 27(4): 36-40 (in Chinese with English abstract) [18]Meng F-H(孟凡宏), Song C-F(宋从凤), Ji Z-L(纪兆林), Wang J-S(王金生). Effect of transgenic tobacco expressing HarpinXoo and its N-terminal sequence on TMV resistance. J Nanjing Agric Univ (南京农业大学学报), 2007, 30(3): 47-52(in Chinese with English abstract) [19]Horsch R B, Fry J E, Fraley R T. A simple and general method for transferring genes into plants. Science, 1985, 227: 1229-1231 [20]Del P O, Lam E. Expression of the baculovirus p35 protein in tobacco affects cell death progression and compromises N gene-mediated disease resistance response to Tobacco mosaic virus. Mol Plant-Microbe Interact, 2003, 16: 485-494 [21]Fischer U, Droge-Laser W. Overexpression of NtERF5, a new member of the tobacco ethylene response transcription factor family enhances resistance to tobacco mosaic virus. Mol Plant-Microbe Interact, 2004, 17: 1162-1171 [22]Sinisterra X H, Polston J E, Abouzid A M, Hiebert E. To-bacco plants transformed with a modified coat protein of to-mato mottle Begomovirus show resistance to virus infection. Phytopathology, 1999, 89: 701-706 [23]Kobayashi K, Cabral S, Calamante G, Maldonado S, Mentaberry A. Transgenic tobacco plants expressing the po-tato virus X open reading frame 3 gene develop specific re-sistance and necrotic ring symptoms after infection with the homologous virus. Mol Plant-Microbe Interact, 2001, 14: 1274-1285 [24]Southern E M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol, 1975, 98: 503 [25]Sambrook J, Russell D. Molecular Cloning: A Laboratory Manual, 3rd edn. New York: Cold Spring Harbor Laboratory Press, 2001. pp 304-331 [26]Amero S A, James T C, Elgin S C R. Production of antibodies using proteins in gel bands. In: Walker J M ed. The Protein Protocols Handbook, 2nd edn. New Jersey: Humana Press, 2002. pp 941-944 [27]Wu Y-B(吴艳兵), Xie L-Y(谢荔岩), Xie L-H(谢联辉), Lin Q-Y(林奇英), Lin S-F(林诗发). A preliminary study on anti-TMV activity of polysaccharide from coprinus comatus. Chin Agric Sci Bull (中国农学通报), 2007, 23(5): 338-341 (in Chinese with English abstract) [28]Strathmann A, Kuhlmann M, Heinekamp T, Dr?ge-Laser W. BZI-1 specifically heterodimerises with the tobacco bZIP transcription factors BZI-2, BZI-3/TBZF and BZI-4, and is functionally involved in flower development. Plant J, 2001, 28: 397-408 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[3] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[4] | 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190. |
[5] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[6] | 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839. |
[7] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[8] | 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872. |
[9] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[10] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[11] | 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623. |
[12] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[13] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[14] | 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258. |
[15] | 余国武, 青芸, 何珊, 黄玉碧. 玉米SSIIb蛋白多克隆抗体的制备及其应用[J]. 作物学报, 2022, 48(1): 259-264. |
|