作物学报 ›› 2009, Vol. 35 ›› Issue (1): 71-78.doi: 10.3724/SP.J.1006.2009.00071
杨鸯鸯,李云,丁勇,徐雷,张成桂,刘英,甘莉
YANY Yang-Yang,LI Yun,DING Yong,XI Chun-Lei,ZHANG Cheng-Gui,LIU Ying,GAN Li
摘要:
依据拟南芥、芥菜型油菜和白菜已知超氧化物歧化酶(SOD)保守序列设计引物,用同源序列法和RT-RACE技术克隆甘蓝型油菜Cu/ZnSOD和FeSOD基因,经序列分析和基因片段拼接,得到Cu/ZnSOD和FeSOD基因的全长cDNA,分别为756 bp (GenBank登录号AY970822)和1 037 bp (GenBank登录号EF634058)。以cDNA序列设计引物,获得1 322 bp的Cu/ZnSOD基因组DNA (GenBank登录号DQ431853)和1 659 bp的FeSOD基因组DNA (GenBank登录号EF634057)。生物信息学分析表明,Cu/ZnSOD基因ORF框长459 bp,编码152个氨基酸残基的蛋白质,在基因组序列结构上具有7个外显子和6个内含子。而FeSOD基因ORF框长792 bp,编码263个氨基酸残基的蛋白质,在基因组序列结构上具有8个外显子和7个内含子。二者外显子和内含子交接处完全符合GT/AG规则。利用获得的Cu/ZnSOD的cDNA片段作探针,对菌核病菌诱导甘蓝型油菜叶片的mRNA进行Northern blotting分析,结果显示在同一品种(系)中菌核病菌诱导后Cu/ZnSOD mRNA表达量比诱导前升高,抗(耐)型油菜Cu/ZnSOD mRNA表达量明显高于感病型。油菜叶片SOD酶活性分析结果也获得了完全一致的结果。以上结果表明,甘蓝型油菜SOD基因与菌核病抗性相关。
[1]Fink R C, Scandalios J G. Molecular evolution and structure-function relationships of the superoxide dismutase gene families in angiosperms and their relationship to other eukaryotic and prokaryotic superoxide dismutases. Arch Biochem Biophys, 2002, 399: 19–36 [2]McCord J M, Fridovich I. Superoxide dismutase: An enzymatic function for erythrocuprein (hemocuprein). J Biol Chem, 1969, 244: 6049–6055 [3]Perl A, Perl-Treves R, Galili S. Enhanced oxidative- stress defense in transgenic potato expressing tomato Cu/Zn superoxide dismutase. Theor Appl Genet, 1993, 85: 568–576 [4]McKersie B D, Murnaghan J, Jones K S, Bowley S R. Iron superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance. Plant Physiol, 2000, 122: 1427–1437 [5]Kliebenstein D J, Gershenzon J, Mitchellolds T. Comparative quantitative trait loci mapping of aliphatic, indolic and benzylic glucosinolate production in Arabidopsis thaliana leaves and seeds. Genetics, 2001, 159: 359–370 [6]Baek K H, Skinner D Z. Differential expression of manganese superoxide dismutase sequence variants in near isogenic lines of wheat during cold acclimation. Plant Cell Rep, 2006, 25: 223–30 [7]Liu J J, Goh C J, Loh C S, Tay E B H, Pua E C. Cloning of two cDNAs encoding Cu/Zn-superoxide dismutase (accession No. X95726, X95728) of mustard (Brassica juncea L. Czern & Coss). Plant Physiol, 1998, 116: 867–867 [8]Chen J-Y(陈锦云), Lin X-Y(林祥永), Lan Z-B(兰志斌). The effect of superoxide dismutase on weath fleck prevention. Fujian Agric Sci Technol (福建农业科技), 1996, (5): 13(in Chinese) [9]Wen C-Y(文才艺), Hao Y-H(昊元华), Li H-Y(李浩戈). Changes of SOD activity and MDA in tobacco leaves infected by potato virus Y vein necrosis. Chin Tob Sci (中国烟草科学), 1999, (1): 12–14(in Chinese with English abstract) [10]Wong Y P, Liu Y Q, Shi L. SOD activity of wheat varieties with different resistance to scab. Acta Phytophysiol Sin, 1993, 19: 358–358 [11]Yun X F, LI R X. Studies of induced resistance to downy mildew of cucumber with SOD isozyme protein in cotyledons. Acta Phytopathol Sin, 1997, 27: 221–224 [12]Niu L-Y(牛立元), Wang H-S(王鸿升), Shi M-W(石明旺). Changes of SOD and POD activities in wheat leaves infected by wheat powdery mildew and their relations to resistance. J Henan Voction-Technical Teachers Coll (河南职业技术师范学院学报), 2004, 32(4): 5–8(in Chinese with English abstract) [13]Li R-H(李荣花), Chen J(陈捷), Gao Z-G(高增贵), Tang B-H(唐保宏), Liu J-H(刘军华). Relations between resistance to maize sheath blight and resistant enzymes. J Tianjin Norm Univ (Nat Sci Edn)(天津师范大学学报·自然科学版), 2005, 25(4): 32–36(in Chinese with English abstract) [14]Wu J-J(吴俊江). Studies on the changes of SOD, POD activity and soluble sugar content in leaves of soybean varieties inoculated with Pseudomonas syringae pv. glycinea. Heilongjiang Agric Sci (黑龙江农业科学), 2006, (2): 32–34(in Chinese with English abstract) [15]Purdy L H. Sclerotinia sclerotiorum: History, disease and symptomatology, host range, geographic distribution and impact. Phytopathology, 1979, 69: 875–890 [16]Gan L(甘莉), Wu X-L(伍新玲), Jin L(金良), Feng S-Q(丰胜求), Chen C-L(陈翠莲), Tang H(汤华). The establishment of sclerotinia sclerotiorum resistant near isogenic lines. J Wuhan Univ (Nat Sci Edn) (武汉大学学报·理学版), 2002, 48(6): 761–764(in Chinese with English abstract) [17]Hu B-C(胡宝成), Rimmer S R. Preliminary study of artificial inoculation for resistance (tolerance) to sclerotinia sclerotiorum in rapeseed using detached leaves. J Anhui Agric Sci (安徽农业科学), 1989, (3): 56–58(in Chinese with English abstract) [18]Yoon K, Kim H, Lee W. Cloning and DNA sequencing of cytosolic Cu/Zn superoxide dismutase gene from Chinese cabbage. J Plant Biol, 1998, 41: 68–71 [19]Li H-S(李合生), Sui Q(孙群), Zhao S-J(赵世杰), Zhang W-H(章文华). Principles and Techniques for Plant Physiological and Biochemical Experiment(植物生理生化实验原理和技术). Beijing: Higher Education Press, 2000. pp 167–169(in Chinese) [20]Patel R N, Nripendra S, Shukla K K, Gundla V L, Chauhan U K. Synthesis, structure and biomimetic properties of Cu(II)-Cu(II) and Cu(II)-Zn(II) binuclear complexes: Possible models for the chemistry of Cu/Zn superoxide dismutase. J Inorganic Biochem, 2005, 99: 651–663 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[4] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[5] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[6] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[7] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[8] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
[9] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[10] | 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637. |
[11] | 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659. |
[12] | 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426. |
[13] | 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471. |
[14] | 魏丽娟, 申树林, 黄小虎, 马国强, 王曦彤, 杨怡玲, 李洹东, 王书贤, 朱美晨, 唐章林, 卢坤, 李加纳, 曲存民. 锌胁迫下甘蓝型油菜发芽期下胚轴长的全基因组关联分析[J]. 作物学报, 2021, 47(2): 262-274. |
[15] | 李倩, Nadil Shah, 周元委, 侯照科, 龚建芳, 刘珏, 尚政伟, 张磊, 战宗祥, 常海滨, 傅廷栋, 朴钟云, 张椿雨. 抗根肿病甘蓝型油菜新品种华油杂62R的选育[J]. 作物学报, 2021, 47(2): 210-223. |
|