欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (1): 71-78.doi: 10.3724/SP.J.1006.2009.00071

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜Cu/ZnSOD和FeSOD基因的克隆及菌核病菌诱导表达

杨鸯鸯,李云,丁勇,徐雷,张成桂,刘英,甘莉   

  1. 华中农业大学植物科学技术学学院,湖北武汉 430070
  • 收稿日期:2008-04-20 修回日期:2008-06-15 出版日期:2009-01-12 网络出版日期:2008-11-17
  • 通讯作者: 杨鸯鸯
  • 基金资助:

    本研究由国家自然科学基金资助项目(30170600),湖北省自然科学基金项目(2001ABD113)资助

Cloning of Cu/Zn-Superoxide Dismutase of Brassica napus and Its Induced Expression by Sclerotinia slerotiorum

YANY Yang-Yang,LI Yun,DING Yong,XI Chun-Lei,ZHANG Cheng-Gui,LIU Ying,GAN Li   

  1. College of Plant Science and Technology,Huazhong Agricultural University, Wuhan 430070,China
  • Received:2008-04-20 Revised:2008-06-15 Published:2009-01-12 Published online:2008-11-17
  • Contact: YANY Yang-Yang

摘要:

依据拟南芥、芥菜型油菜和白菜已知氧化物歧化酶(SOD)保守序列设计引物,用同源序列法和RT-RACE技术克隆甘蓝型油菜Cu/ZnSODFeSOD基因,经序列分析和基因片段拼接,得到Cu/ZnSODFeSOD基因的全长cDNA分别为756 bp (GenBank登录号AY970822)1 037 bp (GenBank登录号EF634058)。以cDNA序列设计引物,获得1 322 bpCu/ZnSOD基因组DNA (GenBank登录号DQ431853)1 659 bpFeSOD基因组DNA (GenBank登录号EF634057)。生物信息学分析表明,Cu/ZnSOD基因ORF框长459 bp,编码152个氨基酸残基的蛋白质,在基因组序列结构上具有7个外显子和6个内含子。而FeSOD基因ORF框长792 bp,编码263个氨基酸残基的蛋白质,在基因组序列结构上具有8个外显子和7个内含子。二者外显子和内含子交接处完全符合GT/AG规则。利用获得的Cu/ZnSODcDNA片段作探针,对菌核病菌诱导甘蓝型油菜叶片的mRNA进行Northern blotting分析,结果显示在同一品种()中菌核病菌诱导后Cu/ZnSOD mRNA表达量比诱导前升高,抗()型油菜Cu/ZnSOD mRNA表达量明显高于感病型。油菜叶片SOD酶活性分析结果也获得了完全一致的结果。以上结果表明,甘蓝型油菜SOD基因与菌核病抗性相关。

关键词: Cu/Zn-超氧化物岐化酶, Fe-超氧化物岐化酶, 甘蓝型油菜, 菌核病菌, 基因表达分析

Abstract:

Bythe primers designed from conserved homologous sequences of the genes for superoxide dismutase (SOD) among Arabidopsis thaliana, Brassica juncea and B. rapa ssp. pekinensis, Cu/ZnSOD and FeSOD genes in B. napus were cloned using the methods of homology-based candidate gene and RACE-PCR. After cloning andsequencing, the full lengths of cDNA of Cu/ZnSOD and FeSOD genes (accession no. AY970822 and EF634058 in GenBank) were 756 and 1 037 bp, respectively. Their corresponding genomic sequences were 1 322 bp for Cu/ZnSOD gene and 1 659 bp for FeSOD gene with accession nos. DQ431853 and EF634057 in GenBank, respectively. Bioinformatic analyses showed that the ORF of Cu/ZnSOD gene with 459 bp contained six introns with seven extrons and a polyA tail and could express a protein of 152 amino acids; and the one of FeSOD gene with 792 bp contained seven introns with eight extrons and could determine a protein of 263 amino acids. With cDNA of Cu/ZnSOD gene as probe, Northern blotting analysis showed that its mRNA expression in B. napus cultivars increased after the infection by Sclerotinia sclerotiorum, the expression amount in resistant or tolerant cultivars was higher than that in sensitive ones. The same trend was observed for the SOD activity in leaves. These results suggested that SOD genes were related with the resistance to the disease.

Key words: Cu/ZnSOD, FeSOD, Brassica napus, Sclerotinia sclerotionrum, Gene expression analysis

[1]Fink R C, Scandalios J G. Molecular evolution and structure-function relationships of the superoxide dismutase gene families in angiosperms and their relationship to other eukaryotic and prokaryotic superoxide dismutases. Arch Biochem Biophys, 2002, 399: 19–36
[2]McCord J M, Fridovich I. Superoxide dismutase: An enzymatic function for erythrocuprein (hemocuprein). J Biol Chem, 1969, 244: 6049–6055
[3]Perl A, Perl-Treves R, Galili S. Enhanced oxidative- stress defense in transgenic potato expressing tomato Cu/Zn superoxide dismutase. Theor Appl Genet, 1993, 85: 568–576
[4]McKersie B D, Murnaghan J, Jones K S, Bowley S R. Iron superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance. Plant Physiol, 2000, 122: 1427–1437
[5]Kliebenstein D J, Gershenzon J, Mitchellolds T. Comparative quantitative trait loci mapping of aliphatic, indolic and benzylic glucosinolate production in Arabidopsis thaliana leaves and seeds. Genetics, 2001, 159: 359–370
[6]Baek K H, Skinner D Z. Differential expression of manganese superoxide dismutase sequence variants in near isogenic lines of wheat during cold acclimation. Plant Cell Rep, 2006, 25: 223–30
[7]Liu J J, Goh C J, Loh C S, Tay E B H, Pua E C. Cloning of two cDNAs encoding Cu/Zn-superoxide dismutase (accession No. X95726, X95728) of mustard (Brassica juncea L. Czern & Coss). Plant Physiol, 1998, 116: 867–867
[8]Chen J-Y(陈锦云), Lin X-Y(林祥永), Lan Z-B(兰志斌). The effect of superoxide dismutase on weath fleck prevention. Fujian Agric Sci Technol (福建农业科技), 1996, (5): 13(in Chinese)
[9]Wen C-Y(文才艺), Hao Y-H(昊元华), Li H-Y(李浩戈). Changes of SOD activity and MDA in tobacco leaves infected by potato virus Y vein necrosis. Chin Tob Sci (中国烟草科学), 1999, (1): 12–14(in Chinese with English abstract)
[10]Wong Y P, Liu Y Q, Shi L. SOD activity of wheat varieties with different resistance to scab. Acta Phytophysiol Sin, 1993, 19: 358–358
[11]Yun X F, LI R X. Studies of induced resistance to downy mildew of cucumber with SOD isozyme protein in cotyledons. Acta Phytopathol Sin, 1997, 27: 221–224
[12]Niu L-Y(牛立元), Wang H-S(王鸿升), Shi M-W(石明旺). Changes of SOD and POD activities in wheat leaves infected by wheat powdery mildew and their relations to resistance. J Henan Voction-Technical Teachers Coll (河南职业技术师范学院学报), 2004, 32(4): 5–8(in Chinese with English abstract)
[13]Li R-H(李荣花), Chen J(陈捷), Gao Z-G(高增贵), Tang B-H(唐保宏), Liu J-H(刘军华). Relations between resistance to maize sheath blight and resistant enzymes. J Tianjin Norm Univ (Nat Sci Edn)(天津师范大学学报·自然科学版), 2005, 25(4): 32–36(in Chinese with English abstract)
[14]Wu J-J(吴俊江). Studies on the changes of SOD, POD activity and soluble sugar content in leaves of soybean varieties inoculated with Pseudomonas syringae pv. glycinea. Heilongjiang Agric Sci (黑龙江农业科学), 2006, (2): 32–34(in Chinese with English abstract)
[15]Purdy L H. Sclerotinia sclerotiorum: History, disease and symptomatology, host range, geographic distribution and impact. Phytopathology, 1979, 69: 875–890
[16]Gan L(甘莉), Wu X-L(伍新玲), Jin L(金良), Feng S-Q(丰胜求), Chen C-L(陈翠莲), Tang H(汤华). The establishment of sclerotinia sclerotiorum resistant near isogenic lines. J Wuhan Univ (Nat Sci Edn) (武汉大学学报·理学版), 2002, 48(6): 761–764(in Chinese with English abstract)
[17]Hu B-C(胡宝成), Rimmer S R. Preliminary study of artificial inoculation for resistance (tolerance) to sclerotinia sclerotiorum in rapeseed using detached leaves. J Anhui Agric Sci (安徽农业科学), 1989, (3): 56–58(in Chinese with English abstract)
[18]Yoon K, Kim H, Lee W. Cloning and DNA sequencing of cytosolic Cu/Zn superoxide dismutase gene from Chinese cabbage. J Plant Biol, 1998, 41: 68–71
[19]Li H-S(李合生), Sui Q(孙群), Zhao S-J(赵世杰), Zhang W-H(章文华). Principles and Techniques for Plant Physiological and Biochemical Experiment(植物生理生化实验原理和技术). Beijing: Higher Education Press, 2000. pp 167–169(in Chinese)
[20]Patel R N, Nripendra S, Shukla K K, Gundla V L, Chauhan U K. Synthesis, structure and biomimetic properties of Cu(II)-Cu(II) and Cu(II)-Zn(II) binuclear complexes: Possible models for the chemistry of Cu/Zn superoxide dismutase. J Inorganic Biochem, 2005, 99: 651–663
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[4] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[5] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[6] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[7] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[8] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[9] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[10] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[11] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[12] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
[13] 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471.
[14] 魏丽娟, 申树林, 黄小虎, 马国强, 王曦彤, 杨怡玲, 李洹东, 王书贤, 朱美晨, 唐章林, 卢坤, 李加纳, 曲存民. 锌胁迫下甘蓝型油菜发芽期下胚轴长的全基因组关联分析[J]. 作物学报, 2021, 47(2): 262-274.
[15] 李倩, Nadil Shah, 周元委, 侯照科, 龚建芳, 刘珏, 尚政伟, 张磊, 战宗祥, 常海滨, 傅廷栋, 朴钟云, 张椿雨. 抗根肿病甘蓝型油菜新品种华油杂62R的选育[J]. 作物学报, 2021, 47(2): 210-223.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!