欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (8): 1379-1385.doi: 10.3724/SP.J.1006.2009.01379

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

小麦高分子量谷蛋白亚基间的互补效应对面包加工品质的影响

杨玉双1,2,庞斌双2,**,王兰芬2,张学勇2,*,于元杰1   

  1. 1山东农业大学农学院,山东泰安271018;1中国农业科学院作物科学研究所/农作物基因资源与基因改良国家重点重大科学工程/农业部作物种质资源应用重点开发实验室,北京100081
  • 收稿日期:2009-04-01 修回日期:2009-04-24 出版日期:2009-08-12 网络出版日期:2009-06-10
  • 通讯作者: 张学勇, E-mail: xueyongz@public.bta.net.cn
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2004CB117202),国家自然科学基金项目(30671293)和国家小麦产业技术体系项目资助。

Complementary Effect of High Molecular Weight Glutenin Subumits on Bread-Making Quality in Common Wheat

YANG Yu-Shuang1,2,PANG Bin-Shuang2,**,WANG Lan-Fen2,ZHANG Xue-Yong2*,YU Yuan-Jie1   

  1. 1College of Agronomy,Shandong Agricultural University,Tai'an 271018,China;2Key Laboratory of Crop Germplasm and Utilization,Ministry of Agriculture/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences,Chinese Academy of Agricultural Sciences,Beijing 100081,China
  • Received:2009-04-01 Revised:2009-04-24 Published:2009-08-12 Published online:2009-06-10
  • Contact: ZHANG Xue-Yong, E-mail: xueyongz@public.bta.net.cn

摘要:

利用偃展1号的10HMW-GS近等基因系,研究了不同HMW-GS基因对面包烘烤品质的效应。两年的品质测试结果基本一致,说明所用近等基因系是评价亚基组成对加工品质影响的较理想材料。不同HMW-GS组成对面包评分影响较大,变异系数达到21.5%。相关分析表明,面包体积与形成时间(r = 0.90, P < 0.01)、沉淀值(r = 0.89, P < 0.01)、稳定时间(r = 0.67, P < 0.05)和面粉蛋白质含量(r = 0.52, P < 0.05)均达显著正相关;面包评分与面包体积(r = 0.98, P < 0.01)、沉淀值(r = 0.93, P < 0.01)、形成时间(r = 0.89, P < 0.01)也呈显著正相关。Glu-A1位点1Ax1基因的表达可以提高多数品系的面包评分;当Glu-A1位点是NullGlu-D1位点是5’+12时,Glu-B1位点等位变异的面包加工品质效应为7+8 > 14+15 > 6+8 > 7,而当Glu-A1位点是1号亚基、Glu-D1位点是5’+12时,Glu-B1位点的等位变异的面包品质效应为6+8 > 14+15 > 7;当Glu-A1位点是Null时,14+155+10组合优于与5’+12组合,7+85’+12组合优于与5+10组合;1Dx5基因的沉默显著降低面包烘烤品质,HMW-GS对面包品质的作用似乎在X-亚基和Y-亚基之间存在一定的配合效应,任何一种基因的缺失或沉默都会造成品质的明显下降。

关键词: 小麦, 高分子量谷蛋白亚基, 近等教育系, 面包加工品质, 互补效应

Abstract:

High molecular weight glutenin subunits (HMW-GS) play the major role in determining bread-making quality (BMQ). In this paper, effect of different HMW subunit compositions on bread making quality (BMQ) was evaluated using 10 near isogenic lines and Yanzhan 1 as recurrent parent. The results of correlation analysis showed that the composition of HMW-GS had great impact on bread score, and the variation coefficient between near isogenic lines with different HMW-GS compositions was 21.5%. Bread volume was significantly correlated positively with dough formation time (r = 0.90, P < 0.01), Zeleny sedimentation (r = 0.89, P < 0.01), dough stability time (r = 0.67, P < 0.05) and flour protein content (r = 0.52, P < 0.05). Therefore, bread score was significantly correlated positively with bread volume (r = 0.98, P < 0.01), Zeleny sedimentation (r = 0.93, P < 0.01), and dough formation time (r = 0.89, P < 0.01). The results of BMQ tests indicated that the expression of 1Ax1 at Glu-A1 locus could improve BMQ in most lines. Contribution of alleles at Glu-B1 to BMQ was 7+8>14+15>6+8>7 in lines with Null at Glu-A1and 5’+12 at Glu-D1. However, it was 6+8>14+15> 7 in the lines with 1 at Glu-A1 and 5’+12 at Glu-D1. When Null was at Glu-A1, lines with 14+15 and 5+10 subunits were slightly better than those with 14+15 and 5’+12. In addition, lines with 7+8 and 5’+12 were much better than those with 7+8 and 5+10. Compared to the 5+10 lines, silence of 1Dx5 caused significant BMQ decline. Therefore, it seems that there is complementary effect between X-type and Y-type of HMW-GS on BMQ, either absence will cause decline of BMQ.

Key words: Wheat, HMW-GS, Near isogenic lines, Bread making quality, Complementary effect

[1] Morrison W R. Lipids In wheat: chemistry and technology. St. Paul M N, Pomeranz Y ed. American Association of Cereal Chemists, 1988. pp 373-439
[2] Osborne T B. The protein of the wheat kernel. Publication 84. Washington D C: Carnegie Institute of Washington, 1907. pp 1-119
[3] Payne P I, Corfield K G, Blackman J A. Identification of a high molecular weight subunit of glutenin whose presence correlates with breadmaking quality in wheats of related pedigree. Theor Appl Genet, 1979, 55: 153-159
[4] Shewry P R, Halford N G, Tatham A S. High molecular weight subunits of wheat glutenin. J Cereal Sci, 1992, 15: 105-120
[5] Shewry P R, Tatham A S, Barro P, Lazzeri P. Biotechnology of breadmaking: Unraveling and manipulating the multi-protein gluten complex. Biotechnology, 1995, 13: 1185-1190
[6] Payne P I, Harris P A, Law C N, Holt L M, Blackman J A. The high-molecular-weight subunits of glutenin: Structure, genetics and relationship to bread-making quality. AnnTechnol Agric, 1980, 29: 309-320
[7] Weegles P L, Hamer R J, Schofield J D. Functional properties of wheat glutenin. J Cereal Sci, 1996, 23: 1-17
[8] Lawrence G J, Shepherd K W. Chromosomal location of genes controlling seed proteins in species related to wheat. Theor Appl Genet, 1981, 59: 25-31
[9] Payne P I, Holt L M, Worland A J, Law C N. Structural and genetic studies on the high molecular weight subunits of wheat glutenin: 3. Telocentric mapping of the subunit genes on the long arms of the homoeologous group 1 chromosomes. Theor Appl Genet, 1982, 63: 129-138
[10] Payne P I. Genetics of wheat storage protein and the effect of allelic variation on breed making quality. Ann Rev Plant Physiol, 1987, 38: 141-153
[11] Payne P I, Holt L M, Law C N. Structure and genetic studies on the high molecular weight subunits of wheat glutenin: 1. Allelic variation in subunits amongst varieties of wheat (Triticum aestivum).Theor Appl Genet, 1981, 60: 229-236
[12] Zhao H(赵和), Lu S-Y(卢少源), Li Z-Z(李宗智). Studies on inheritance and variation of HMW glutenin subunits and their correlation with quality and other agronomic characters in wheat. Acta Agron Sin (作物学报), 1994, 20(1): 67-75 (in Chinese with English abstract)
[13] Lawrrence G J, Macritchie F, Wrigley C W. Dough and baking quality of wheat lines deficient in glutenin subunits controlled by the Glu-A1, Glu-B1 and Glu-D1 loci. J Cereal Sci, 1988, 7: 109-112

[14] Branlard G, Dardcvet M, Saccomano R, Lagoutte F,Gourdon J. Genetics diversity of wheat storage proteins and bread wheat quality. Euphytica, 2001, 119: 59-67
[15] Song J-M(宋建民), Wu X-Y(吴祥云), Liu J-J(刘建军), Liu A-F(刘爱峰), Zhao Z-D(赵振东), Liu G-T(刘广田). Study on quality scoring system assessed by wheat high-molecular-weight glutenin subunits. Acta Agron Sin (作物学报), 2003, 29(6): 829-834 (in Chinese with English abstract)
[16] Cheng A-H(程爱华), Wang L-K(王乐凯), Zhao N-X(赵乃新), Lan J(兰静), Dai C-J(戴常军), Ren H-B(任洪波). Improvement on the quality score system of the HMW glutenin subunits and its application. J Triticeae Crops (麦类作物学报), 2002, 22(1): 19-22 (in Chinese with English abstract)
[17] Zhang X-Y(张学勇), Pang B-S(庞斌双), You G-X(游光霞), Wang L-F(王兰芬), Jia J-Z(贾继增), Dong Y-C(董玉琛). Allelic variation and genetic diversity at Glu-1 loci in Chinese wheat (Triticum aestivum L.) germplasms. Sci Agric Sin (中国农业科学), 2002, 35(11): 1302-1310 (in Chinese with English abstract)
[18] Payne P I, Lawrence G J. Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1, and Glu-D1 which code for high molecular weight subunits of glutenin in hexaploid wheat. Cereal Res Commun, 1983, 11: 29-35
[19] Deng Z Y, Tian J C, Sun G X. Influence of high molecular weight glutenin subunit substitution on rheological behavior and bread-baking quality of near-isogenic lines developed from Chinese wheat. Plant Breed, 2005, 124: 428-431
Peña R J, Zarco-Hmamdez J, Mujeeb-Kazi A. Glutenin subunit compositions and bread-making quality characteristics of synthetic hexaploid wheat derived from Triticum turgidum ´ Triticum tauschii (Coss.) Schmal crosses. J Cereal Sci, 1995, 21: 15-23
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!