作物学报 ›› 2009, Vol. 35 ›› Issue (8): 1425-1431.doi: 10.3724/SP.J.1006.2009.01425
殷贵鸿1,2,3,李根英4,何中虎2,5,刘建军4,王辉1,夏先春2,*
YIN Gui-Hong1,2,3, LI Gen-Ying4, HE Zhong-Hu2,5, LIU Jian-Jun4, WANG Hui1, and XIA Xian-Chun2,*
摘要:
为明确济麦22携带抗白粉病基因的染色体位置,利用济麦22与感病亲本中国春杂交,用小麦白粉菌(Blumeria graminis f. sp. tritici)强毒性小种E20对F2抗、感分离群体和F2:3家系进行抗病鉴定和遗传分析。结果表明,济麦22携带1个显性抗白粉病基因, 暂被命名为PmJM22。运用SSR和EST标记及分离群体分组分析法(bulked segregant analysis, BSA),将其定位在2BL染色体上,与4个SSR和5个EST标记间的连锁距离为7.7 cM (Xwmc149)到31.3 cM (Xbarc101)。通过分析2BL上其他抗白粉病基因的来源、染色体位置和抗性反应,认为PmJM22不同于Pm6、Pm26、Pm33和MlZec1。
[1]Liang S S, Suenaga K, He Z H, Wang Z L, Liu H Y, Wang D S, Singh R P, Sourdille P, Xia X C. Quantitative trait loci mapping for adult-plant resistance to powdery mildew in bread wheat. Phytopathology, 2006, 96: 784-789 [2]National Agro-Tech Extension and Service Center (全国农业技术推广服务中心). Prediction of the outbreak of significant disease and pest for crops in national scale in 2004. China Plant Prot (中国植保导刊), 2004, (3): 21-22 (in Chinese) [3]Zhang Y-J(张跃进), Wang J-Q(王建强), Jiang Y-Y(姜玉英), Xia B(夏冰). Prediction of the outbreak of disease and pest for crops in national scale in 2005. China Plant Prot (中国植保导刊), 2005, (4): 28-30 (in Chinese) [4]Zhang Y-J(张跃进), Wang J-Q(王建强), Jiang Y-Y(姜玉英), Feng X-D(冯晓东), Xia B(夏冰). Prediction of the outbreak of disease and pest for crops in national scale in 2006. China Plant Prot (中国植保导刊), 2006, (4): 5-8 (in Chinese) [5]Zhang Y-J(张跃进), Wang J-Q(王建强), Jiang Y-Y(姜玉英), Feng X-D(冯晓东), Xia B(夏冰), Liu Y(刘宇), Zeng J(曾娟). Prediction of the outbreak of disease and pest for crops in national scale in 2007. China Plant Prot (中国植保导刊), 2007, (2): 32-35 (in Chinese) [6]Zhang Y-J(张跃进), Wang J-Q(王建强), Jiang Y-Y(姜玉英), Feng X-D(冯晓东), Xia B(夏冰), Liu Y(刘宇), Zeng J(曾娟). Prediction of the outbreak of disease and pest for crops in national scale in 2008. China Plant Prot (中国植保导刊), 2008, (3): 38-40 (in Chinese) [7]McIntosh R A, Yamazaki Y, Dubcovsky J, Rogers J,Morris C, Somers D J, Appels R,Devos KM. Catalogue of gene symbols for wheat. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P, eds. Proc 11th Intl Wheat Genet Symp. Sydney, Australia: Sydney University Press, 2008 [8] Hu T-Z(胡铁柱), Li H-J(李洪杰), Liu Z-J(刘子记), Xie C-J(谢超杰), Zhou Y-L(周益林), Duan X-Y(段霞瑜), Jia X(贾旭), You M-S(尤明山), Yang Z-M(杨作民), Sun Q-X(孙其信), Liu Z-Y(刘志勇). Identification and molecular mapping of the powdery mildew resistance gene in wheat cultivar Yumai 66. Acta Agron Sin (作物学报), 2008, 34(4): 545-550 (in Chinese with English abstract) [9] Huang X Q, Röder M S. Molecular mapping of powdery mildew resistance genes in wheat: A review. Euphytica, 2004, 137: 203-223 [10]Miranda L M, Murphy J P, Marshall D, Leath S. Pm34: A new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.). Theor Appl Genet, 2006, 113: 1497-1504 [11]Miranda L M, Murphy J P, Marshall D, Cowger C, Leath S. Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theor Appl Genet, 2007, 114: 1451-1456 [12]Antonio Blanco, Gadaleta A, Cenci A, Carluccio A V, Abdelbacki A M M, Simeone R. Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides in durum wheat. Theor Appl Genet,2008, 117: 135-142 [13]Perugini L D, Murphy J P, Marshall D, Brown-Guedira G. Pm37, a new broadly effective powdery mildew resistance gene from Triticum timopheevii. Theor Appl Genet, 2008, 116: 417-425 [14]Lillemo M, Asalf B, Singh R P, Huerta-Espino J, Chen X M, He Z H, Bjørnstad Å. The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powderymildew in bread wheat line Saar. Theor Appl Genet,2008, 116: 1155-1166 [15]Hu T-Z(胡铁柱), Li H-J(李洪杰), Xie C-J(谢超杰), You M-S(尤明山), Yang Z-M(杨作民), Sun Q-X(孙其信), Liu Z-Y(刘志勇). Molecular mapping and chromosomal location of the powdery mildew resistance gene in wheat cultivar Tangmai 4. Acta Agron Sin (作物学报), 2008, 34(7): 1193-1198 (in Chinese with English abstract) [16]Li H-S(李豪圣), Liu J-J(刘建军), Song J-M(宋建民), Liu A-F(刘爱峰), Cheng D-G(程敦公), Zhao Z-D(赵振东). Wheat cultivar Jimai 22 with high yield, stable productivity, good disease resistance and wide adaptability. J Triticeae Crops (麦类作物学报), 2007, 27(4): 744 (in Chinese) [17]Wang Z L, Li L H, He Z H, Duan X Y, Zhou Y L, Chen X M, Lillemo M, Singh R P, Wang H, Xia X C. Seedling and adult plant resistance to powdery mildew in Chinese bread wheat cultivars and lines. Plant Dis, 2005, 89: 457-463 [18]Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal locations and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014-8018 [19]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating population. Proc Natl Acad Sci USA, 1991, 88: 9828-9832 [20]Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105-1114 [21]Song Q J, Shi J R, Singh S, Fickus E W, Costa J M, Lewis J, Gill B S, Ward R, Cregan P B. Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet, 2005, 110: 550-560 [22]Conley E J, Nduati V, Gonzalez-Hernandez J L, Mesfin A, Trudeau-Spanjers M, Chao S, Lazo G R, Hummel D D, Anderson O D, Qi L L, Gill B S, Echalier B, Linkiewicz A M, Dubcovsky J, Akhunov E D, Dvo?ák J, Peng J H, Lapitan N L V, Pathan M S, Nguyen H T, Ma X F, Miftahudin, Gustafson J P, Greene R A, Sorrells M E, Hossain K G, Kalavacharla V, Kianian S F, Sidhu D, Dilbirligi M, Gill K S, Choi D W, Fenton R D, Close T J, McGuire P E, Qualset C O, Anderson J A. A 2600-locus chromosome bin map of wheat homoeologous group 2 reveals interstitial gene-rich islands and colinearity with rice. Genetics, 2004, 168: 625-637 [23]Sourdille P, Singh S, Cadalen T, Browm-Guedira G L, Gay G, Qi L L, Gill B S, Dufour P, Murigneux A, Bernard M. Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics, 2004, 4: 12-25 [24]Mohler V, Zeller F J, Wenzel G, Hsam S L K. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.): 9. Gene MlZec1 from the Triticum dicoccoides-derived wheat line Zecoi-1. Euphytica, 2005, 142: 161-167 [25]Xiang Q-J(向齐君), Sheng B-Q(盛宝钦), Duan X-Y(段霞瑜), Zhou Y-L(周益林). The analysis of effective wheat powdery mildew resistance genes of some wheat breeding lines. Acta Agron Sin (作物学报), 1996, 22(6): 741-744 (in Chinese with English abstract) [26]Wu X-P (武英鹏), Yuan Z-Y(原宗英), Li Y-F(李艳芳). Monitoring of the virulence of Erysiphe graminis f. sp. Tritici in different ecological areas of Shanxi Province. Chin J Eco-Agric (中国农业生态学报), 2005, 13(2): 62-64 (in Chinese with English abstract) [27]Cao S-Q(曹世勤), Guo J-G(郭建国), Luo H-S(骆惠生), Jin M-A(金明安), Jia Q-Z(贾秋珍), Jin S-L(金社林). Selection of resistance sources to powdery mildew on wheat in Gansu and set-up of their gene banks. Plant Prot (植物保护), 2008, 34(1): 49-52(in Chinese with English abstract) [28]Li Q(李强), Wang B-T(王保通), Wu X-Y(吴兴元), Duan S-K(段双科), Wang F(王芳). Analysis on resistant genes and new-breeding wheat cultivars (lines) for resistance to powdery mildew in Shaanxi Province. Acta Phytophylacica Sin (植物保护学报), 2008, 35(5): 438-442(in Chinese with English abstract) [29]Yang Z-M(杨作民), Tang B-R(唐伯让), Shen K-Q(沈克全), Xia X-C(夏先春). A strategic problem in wheat resistance breeding-building and utilization of sources of second-line resistance against rusts and mildew in China. Acta Agron Sin (作物学报), 1994, 20: 385-394 (in Chinese with English abstract) [30]Zhang Z-H(张志华), Wang H-S(王洪森), Yan J(闫俊), Wu Z-X(武芝霞). Assessment and application of wheat resistant germplasm C39. Crop Germplasm Resour (作物品种资源), 1999, (4): 36-37 (in Chinese) [31]Zheng D-S(郑殿升), Song C-H(宋春华), Liu S-C(刘三才), Chen M-Y(陈梦英), Wang X-M(王晓鸣), Dai F-C(戴法超), Liu X-M(刘旭明), Li Y-L (李怡琳). Germplasm enhancement of wheat on resistance to powdery mildew. Crop Germplasm Resour (作物品种资源), 1999, (4): 33-55 (in Chinese) [32]Wu J-P(武计萍), Xu G-Y(许钢垣), Qiu S-Y(仇松英), Meng Z-P(孟兆平), Xue J-Z(薛金枝), Lu L-H(逯腊虎).Genetic resistance of wheat germplasm Linyuan 7069 and current application. J Triticeae Crops (麦类作物学报), 1997, 17(5): 16-18 (in Chinese) ) [33]Wang J-X(王剑雄), Zhang Q-H(张清海), Guo X-C(郭秀婵). Opinions for stripe rust and powdery mildew resistance and utilization value of wheat varieties from Britain. Acta Agric Univ Henanensis (河南农业大学学报), 1992, 26(2): 174-178 (in Chinese with English abstract) [34]Yan G P, Chen X M, Line R F, Wellings C R. Resistance gene-analog polymorph-hism markers co-segregating with the Yr5 gene for resistance to wheat stripe rust. Theor Appl Genet, 2003, 106: 636-643 [35]Rong J K, Millet E, Manisterski J, Feldman M. A new powdery mildew resistance gene: introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica, 2000, 115: 121-126 [36]Wang R(王瑞), Liu H-Y(刘红彦), Li H-L(李洪连), Wang J-M(王俊美), Yi Y-J(伊艳杰). Identification of PCR markers linked to wheat powdery mildew resistance gene Pm6. J Triticeae Crops (麦类作物学报), 2007, 27(3): 421-424 (in Chinese with English) [37]Zhu Z D, Zhou R H, Kong X Y, Dong Y C, Jia J Z. Microsatellite markers linked to two powdery mildew resistance genes introgressed from Triticum carthlicum accession PS5 into common wheat. Genome, 2005, 48: 585-590 [38]Smith P H, Hadfield J, Hart N J, Koebner R M, Boyd L A. STS markers for the wheat yellow rust resistance gene Yr5 suggest a NBS-LRR-type resistance gene cluster. Genome, 2007,50: 259-265 |
[1] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[2] | 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811. |
[3] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[4] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[5] | 王音, 冯志威, 葛川, 赵佳佳, 乔玲, 武棒棒, 闫素仙, 郑军, 郑兴卫. 普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估[J]. 作物学报, 2021, 47(8): 1511-1521. |
[6] | 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196. |
[7] | 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报, 2021, 47(5): 974-982. |
[8] | 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586. |
[9] | 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404. |
[10] | 张雪翠, 孙素丽, 卢为国, 李海朝, 贾岩岩, 段灿星, 朱振东. 河南大豆新品系抗大豆疫霉根腐病基因鉴定[J]. 作物学报, 2021, 47(2): 275-284. |
[11] | 张欢, 罗怀勇, 李威涛, 郭建斌, 陈伟刚, 周小静, 黄莉, 刘念, 晏立英, 雷永, 廖伯寿, 姜慧芳. 花生全基因组抗病基因鉴定及其对青枯菌侵染的响应分析[J]. 作物学报, 2021, 47(12): 2314-2323. |
[12] | 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172. |
[13] | 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1和Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090. |
[14] | 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93. |
[15] | 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005. |
|