欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (9): 1729-1737.doi: 10.3724/SP.J.1006.2009.01729

• 研究简报 • 上一篇    下一篇

利用品质性状的回交选择导入系挖掘水稻抗纹枯病QTL

李芳1,程立锐1,许美容1,周政1,张帆1,孙勇1,周永力1,朱苓华1,徐建龙1,*,黎志康1,2   

  1. 1中国农业科学院作物科学研究所/农作物基因资源与遗传改良国家重点科学工程,北京100081;2Intemational Rice Research Institute,DAPO Box 777,Metro Manila,Philippines
  • 收稿日期:2009-02-05 修回日期:2009-03-20 出版日期:2009-09-12 网络出版日期:2009-07-04
  • 通讯作者: 徐建龙,E-mail: xujl@caas.net.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30671413),国家高技术研究发展计划(863计划)项目(2007AA10Z191),引进国际引进农业科学技术计划(948计划)项目(2006-G51)资助。

QTL Mining for Sheath Blight Resistance Using the Backcross Selected Introgression Lines for Grain Quality in Rice

LI Fang1,CHENG Li-Rui1,XU Mei-Rong1,ZHOU Zheng1,ZHANG Fan1,SUN Yong1,ZHOU Yong-Li1,ZHU Ling-Hua1,XU Jian-LOng1*,LI Zhi-Kang1,2   

  1. 1Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement,Chinese Academy of Agricultural Sciences,Beijing 100081,China;2International Rice Research Institute,DAPO Box7777,Metro Manila,Philippines
  • Received:2009-02-05 Revised:2009-03-20 Published:2009-09-12 Published online:2009-07-04
  • Contact: XU Jian-ling,E-mail: xujl@caas.net.cn

摘要:

将优质、抗纹枯病的高秆供体Tarom MolaiiBinam导入半矮秆IR64和特青背景,培育品质性状回交选择构建的4个导入系群体IR64/Tarom Molaii、特青/Tarom MolaiiIR64/Binam和特青/Binam,定位了影响水稻抗纹枯病病级(disease scale, DS)、相对病斑高度(relative lesion height, RH)和株高(plant height, PH)QTL。结果表明,4个导入系群体的DSRH高度相关,两者与PH呈显著负相关。导入系后代各性状均呈现超亲分离,出现抗性明显优于双亲的抗病个体,其中40%左右属半矮秆抗病类型。采用单向方差分析,在这4个群体中分别定位到10886个影响3个性状的QTL,多数基因座上降低DSRH即增强抗病性同时增加株高的等位基因均来自两个供体。未在同一供体两个不同背景下检测到影响3个性状的相同QTL,表明抗纹枯病QTL表达有明显的遗传背景效应。PHDSPHRH被定位在同一个显著标记位点的QTL数分别占两个性状QTL总数的38%52%,表明水稻纹枯病抗性与株高关系密切,两者存在许多连锁位点。与以往相同群体品质性状QTL的定位结果相比,发现品质性状QTL与抗纹枯病QTL大多分布在染色体的不同区域,彼此独立遗传。对利用目标性状选择导入系定位非目标性状QTL的效果、影响因素及育种应用进行了探讨,强调了目标性状选择导入系对非目标性状QTL发掘及育种应用的重要性。

关键词: 回交选择导入系, 数量性状基因座(QTL), 水稻纹枯病抗性, 稻米品质, 株高

Abstract:

QTLs for disease scale (DS), relative lesion height (RH) and plant height (PH) were mapped using the four introgression lines selected against grain quality from the four introgression populations between two elite varieties, IR64 and Teqing as recurrent parents and two tall varieties, Tarom Molaii and Binam with high grain quality and sheath blight resistance (SBR) as donors. DS had high significant positive correlation with RH, and both of them were significantly negatively correlated with PH. DS, RH and PH presented wide segregations even in the relative small (2860) introgression populations, including some semidwarf plants segregated with overparent SBR. Ten, eight, eight and six QTLs for the three traits were identified in IR64/Tarom Molaii, Teqing/Tarom molaii, IR64/Binam and Teqing/Binam, respectively by one   way ANOVA analysis. The two donor alleles at most QTLs reduced DS and RH as well as increased PH. No any a common QTL for each of the three traits was detected in the populations of the same donor in the two different background, indicating there was a obvious genetic background effect on expression of SBR- and PH-QTLs. QTLs linked to the same marker loci between PH and DS, and PH and RH accounted for 38% and 52% of total QTLs for the two traits, respectively, indicating SBR had tight relationship with PH and both of them shared some linked loci. As compared with the previous QTL mapping results of grain quality in the same populations, most QTLs for grain quality and SBR distributed in different chromosome regions and showed independently inherited. Efficiency, influencing factors and its application in breeding of QTL mapping for non-target traits using introgression lines selected against the target trait were deeply discussed, and importance of selective introgression lines in QTL mining and breeding use was also emphasized.

Key words: Backcross selected introgression lines(SBILs), Quantiative trait locus(QTL), Rice sheath blight resistance(SBR), Grain quality, Plant height

[1] McKenzie K S, Rush M C, Groth D E. Registration of two disease-resistant germplasm lines of rice. Crop Sci, 1986, 26: 839-840

[2] Marchetti M A, Bollich C N. Quantification of the relationship between sheath blight severity and yield loss in rice. Plant Dis, 1991, 75: 773-775

[3] Toriyama K. Breeding for resistance to major rice diseases in Japan. Los Baños, Philippines: IRRI, 1972. 253-281

[4] Dasgupta M K. Rice sheath blight: the challenge continues. In: Singh U S, Mukhopadhyay A N, Kumar J, Chaube H S, eds. Plant Diseases of International Importance Vol I. Diseases of Cereals and Pulses. Prentice Hall, Englewood Cliff, New Jersey. 1992

[5] Rush M C, Lindberg G D. Rice disease research. Rice J, 1996, 77: 49-52

[6] Xie Q J, Rush M C, Cao J. Somaclonal variation for disease resistance in rice (Oryza sativa L.). In: Grayson B T, Green M B, Copping L G, eds. Pest Management in Rice. New York: Elsevier Applied Science, 1990. pp 491-509

[7] Chang T T. The present status of breeding for resistance to rice blast and sheath blight in Taiwan. Int Rice Res Newsl, 1986, 11: 1-7

[8] Che K P, Zhan Q C, Xing Q H, Wang Z P, Jin D M, He D J, Wang B . Tagging and mapping of rice sheath blight resistant gene. Theor Appl Genet, 2003, 106: 293-297

[9] Kunihiro Y(国广泰史), Qian Q(钱前), Sato H(佐藤宏之), Teng S(滕胜), Zeng D-L(曾大力), Fujimoto K(藤本宽), Zhu L-H(朱立煌).QTL analysis of sheath blight resistance in rice. Acta Genet Sin (遗传学报), 2002, 29(1): 50-55 (in Chinese with English abstract)

[10]Han Y-P(韩月澎), Xing Y-Z(邢永忠), Chen Z-X(陈宗祥), Gu S-L(顾世梁), Pan X-B(潘学彪), Chen X-L(陈秀兰), Zhang Q-F(张启发). Mapping QTLs for horizontal resistance to sheath blight in an elite rice restorer line, Minghui 63. Acta Genet Sin (遗传学报), 2002, 29(7): 622-626 (in Chinese with English abstract)

[11]Pan X-B(潘学彪), Zou J-H(邹军煌), Chen Z-X(陈宗祥), Lu J-F(陆驹飞), Yu H-X(于恒秀), Li H-T(李海涛), Wang Z-B(王子斌), Rush M C, Zhu L-H(朱立煌). Mapping major-QTL for resistance to sheath blight in rice, Jamine 85. Chin Sci Bull (科学通报), 1999, 44(15): 1629-1635(in Chinese)

[12]Pinson S R M, Capdevielle F M, Oard J H. Confirming QTLs and finding additional loci conditioning sheath blight resistance in rice using recombinant inbred lines. Crop Sci, 2005, 45: 503-510.

[13]Sato H, Ideta O, Audo I, Kunihiro Y, Hirabayashi H, Iwano M, Miyasaka A, Nemoto H, Imbe T. Mapping QTLs for sheath blight resistance in the rice line Wss2. Breed Sci, 2004, 54: 265-271

[14]Zou J H, Pan X B, Chen Z X, Xu J Y, Lu J F, Zhai W X, Zhu L H. Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars (Oryza sativa L.). Theor Appl Genet, 2000, 101: 569-575

[15]Li Z K, Pinson S R M, Marchetti M A, Stansel J W, Park W D. Characterization of quantitative trait loci (QTLs) in cultivated rice controlling to field resistance to sheath blight (Rhizoctonia solani). Theor Appl Genet, 1995, 91: 382-388

[16]Yin Y-J(殷跃军), Zuo S-M(左示敏), Wang H(王辉), Chen Z-X(陈宗祥), Ma Y-Y(马玉银), Zhang Y-F(张亚芳), Gu S-L(顾世梁), Pan X-B(潘学彪). Pyramiding effects of three quantitative trait loci for resistance to sheath blight using near-isogenic lines of rice. Chin J Rice Sci (中国水稻科学), 2008, 22(4): 340-346 (in Chinese with English abstract)

[17]Zuo S-M(左示敏), Yin Y-J(殷跃军), Zhang L(张丽), Zhang Y-F(张亚芳), Chen Z-X(陈宗祥), Pan X-B(潘学彪). Breeding value and further mapping of a QTL qsB-11 conferring the rice sheath blight resistance. Chin J Rice Sci (中国水稻科学), 2007, 21(2): 136-142(in Chinese with English abstract)

[18]Tanksley S D, Nelson J C. Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet, 1996, 92: 191-203

[19]Zhao X Q, Xu J L, Zhao M, Lafitte R, Zhu L H, Fu B Y, Gao Y M, Li Z K. QTLs affecting morph-physiological traits related to drought tolerance detected in overlapping introgression lines of rice (Oryza sativa L.). Plant Sci, 2008, 174: 618-625

[20]Xu J L, Lafitte H R, Gao Y M, Fu B Y, Torres R, Li Z K. QTLs for drought escape and tolerance identified in a set of random introgression lines of rice. Theor Appl Genet, 2005, 111: 1642-1650

[21]Zhang X, Zhou S X, Fu Y C, Su Z, Wang X K, Sun C Q. Identification of a drought tolerant introgression line derived from Dongxiang common wild rice (O. rufipogon Griff.). Plant Mol Biol, 2006, 62: 247-259

[22]Arif M. Moleuclar Mapping of Genes/QTLs Affecting Resistance to Xanthomonas Oryza pv. oryza and Grain Quality Traits in Rice (Oryza sativa L.). PhD Dissertation of University of Philippines, Los Baños, Philippines. 2002

[23]Chen Z-X(陈宗祥), Zou J-H(邹军煌), Han Y-P(韩月鹏), Xu J-Y(徐敬友), Tong Y-H(童蕴慧), Yu H-X(于恒秀), Zhang Y-F(张亚芳), Pan X-B(潘学彪). An innovated method for research on inheritance of resistance to rice sheath blight and its verification. Chin J Rice Sci (中国水稻科学), 2002, 16(1): 74-76 (in Chinese with English abstract)

[24]Rush M C, Hoff B J, Mcllrath W O. A uniform disease rating system for rice disease in the United States. Proc 16th Rice Tech Working Group, Lake Charles, 1976. p 64

[25]Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): Frequency, length variation, transposon associations, and genetic marker potential. Genome Res, 2001, 11: 1446-1448

[26]SAS Institute. SAS/STAT User’s Guide. Cary: SAS Institute, 1996

[27]Zang J P, Sun Y, Wang Y, Yang J, Li F, Zhou Y L, Zhu L H, Reys J, Fotokian M, Xu J L, Li Z K . Dissection of genetic overlap of salt tolerance QTLs at the seeding and tillering stages using backcross introgressive lines in rice. Sci China (Ser C·Life Sci), 2008, 51(7): 583-591

[28]Chevin L M, Hospital F. Selective sweep at a quantitative trait locus in the presence of background genetic variation. Genetics, 2008, 180: 1645-1660

[29]Ungerer M C, Linder C R, Rieseberg L H. Effects of genetic background on response to selection in experimental populations of Arabidopsis thaliana. Genetics, 2003, 163: 277-286

[30]Xie X-W(谢学文), Xu M-R(许美容), Zang J-P(藏金萍), Sun Y(孙勇), Zhu L-H(朱苓华), Xu J-L(徐建龙), Zhou Y-L(周永力), Li Z-K(黎志康). Genetic background and environment effects on expression of QTL for sheath blight resistance in reciprocal introgression lines of rice. Acta Agron Sin (作物学报), 2008, 34(11): 1885-1893 (in Chinese with English abstract)

[31]Yuan X-P(袁筱萍), Wei X-H(魏兴华), Yu H-Y (余汉勇), Wang Y-P(王一平), Tang S-X(汤圣祥). Effects of different cultivars and relatives factors on sheath blight resistance of rice. Acta Agron Sin (作物学报), 2004, 30(4): 739-744 (in Chinese with English abstract)

[32]Rush M C, Pan X B, Sha X Y. Development of sheath blight resistance in rice. In: 85thAnnu Res Rep, Rice Research Station, LSU Agricultural Center, Crowley, LA, USA, 1995, 85: 380-393

[33]Han Y P, Xing Y Z, Gu S L, Chen Z X, Pan X B, Chen X L. Effect of morphological traits on sheath blight resistance in rice. Acta Bot Sin, 2003, 45: 825-831

[34]Ware D, Jaiswal P, Ni J, Pan X, Chang K, Clark K, Teytelman L, Schmidt S, Zhao W, Cartinhour S, McCouch S, Stein L. Gramene: A resource for comparative grass genomics. Nucl Acids Res, 2002, 30: 103-105

[35]Martin T J, Ellingboe A H. Differences between compatible parasite/host genotypes involving the Pm4 locus of wheat and the corresponding genes in Erysiphe graminis f. sp. tritici. Phytopathology, 1976, 66: 1435-1438

[36]Royer M H, Nelson R R, MacKenzie D R, Diehle D A. Partial resistance of near-isogenic wheat lines compatible with Erysiphe graminis f. sp. tritici. Phytopathology, 1984,69: 405-409

[37]Li Z K, Luo L J, Mei H W, Paterson A H, Zhao X H, Zhong D B, Wang Y P, Yu X Q, Zhu L, Tabien R, Stansel J W, Ying C S. A ‘defeated’ rice resistance gene acts as a QTL against a virulent strain of Xanthomonas oryzae pv. oryzae. Theor Appl Genet, 1999, 261: 58-63

[38]Li Z-K(黎志康). Strategies for molecular rice breeding in China. Mol Plant Breed (分子植物育种), 2005, 3(5): 603-608 (in Chinese with English abstract)

[39]Xu J-L(徐建龙), Gao Y-M(高用明), Fu B-Y(傅彬英), Li Z-K(黎志康). Identification and screening of favorable genes from rice germplasm in backcross introgression populations. Mol Plant Breed (分子植物育种), 2005, 3(5): 619-628 (in Chinese with English abstract)

[40]Li Z K, Fu B Y, Gao Y M, Xu J L, Ali J, Lafitte H R, Jiang Y Z, Rey J, Dominggo, Vijayakumar C H M, Maghirang R, Zheng T Q, Zhu L H.Genome-wide introgression lines and a forward genetics strategy for functional genomic research of complex phenotypes in rice. Plant Mol Biol, 2005, 59: 33-52

[41]Ali A J, Xu J L, Ismail A M, Fu B Y, Vijaycumar C H M, Gao Y M, Domingo J, Maghirang R, Yu S B, Gregorio G, Yanaghihara S, Cohen M, Carmen B, Mackill D, Li Z K. Hidden diversity for abiotic and biotic stress tolerances in the primary gene pool of rice revealed by a large backcross breeding program. Field Crops Res,2006, 97: 66-76

[42]Zheng T-Q(郑天清), Xu J-L(徐建龙), Fu B-Y(傅彬英), Gao Y-M(高用明), Veruka S, Lafitte R, Zhai H-Q(翟虎渠), Wan J-M(万建民), Zhu L-H(朱苓华), Li Z-K(黎志康). Preliminary identification of genetic overlaps between sheath blight resistance and drought tolerance in the introgression lines from directional selection . Acta Agron Sin (作物学报), 2007, 33(8): 1380-1384 (in Chinese with English abstract)

Kang L(康乐), Li H(李宏), Sun Y(孙勇), Lu D-C(卢德城), Zhang F(张帆), Huang D-Q(黄道强), Xu J-L(徐建龙), Wang Z-D(王志东), Zhu L-H(朱苓华), Gao Y-M(高用明), Fu B-Y(傅彬英), Li K-H(李康活), Zhou Y-L(周永力), Zhou S-C(周少川), Li Z-K(黎志康). Genetic dissection of yield potential in rice (Oryza sativa L.) using introgression lines. Acta Agron Sin (作物学报), 2008, 34(9): 1500-1509 (in Chinese with English abstract)

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[3] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[6] 刘秋员, 周磊, 田晋钰, 程爽, 陶钰, 邢志鹏, 刘国栋, 魏海燕, 张洪程. 长江中下游地区常规中熟粳稻产量、品质及氮素吸收性状的相互关系分析[J]. 作物学报, 2021, 47(5): 904-914.
[7] 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461.
[8] 付虹雨, 崔国贤, 李绪孟, 佘玮, 崔丹丹, 赵亮, 苏小惠, 王继龙, 曹晓兰, 刘婕仪, 刘皖慧, 王昕惠. 基于无人机遥感图像的苎麻产量估测研究[J]. 作物学报, 2020, 46(9): 1448-1455.
[9] 韩展誉,管弦悦,赵倩,吴春艳,黄福灯,潘刚,程方民. 灌浆温度和氮肥及其互作效应对稻米贮藏蛋白组分的影响[J]. 作物学报, 2020, 46(7): 1087-1098.
[10] 姜朋,何漪,张旭,吴磊,张平平,马鸿翔. 宁麦9号与扬麦158株高及其构成因素的遗传解析[J]. 作物学报, 2020, 46(6): 858-868.
[11] 马娟, 曹言勇, 王利锋, 李晶晶, 王浩, 范艳萍, 李会勇. 利用WGCNA鉴定玉米株高和穗位高基因共表达模块[J]. 作物学报, 2020, 46(3): 385-394.
[12] 苏达,吴良泉,Søren K. Rasmussen,周庐建,潘刚,程方民. 磷营养对水稻籽粒锌生物有效性的影响及其与植酸等磷酸肌醇谱含量的关系[J]. 作物学报, 2020, 46(02): 228-237.
[13] 霍强,杨鸿,陈志友,荐红举,曲存民,卢坤,李加纳. 基于QTL定位和全基因组关联分析筛选甘蓝型油菜株高和一次有效分枝高度的候选基因[J]. 作物学报, 2020, 46(02): 214-227.
[14] 唐健,唐闯,郭保卫,张诚信,张振振,王科,张洪程,陈恒,孙明珠. 氮肥施用量对机插优质晚稻产量和稻米品质的影响[J]. 作物学报, 2020, 46(01): 117-130.
[15] 崔月,陆建农,施玉珍,殷学贵,张启好. 蓖麻株高性状主基因+多基因遗传分析[J]. 作物学报, 2019, 45(7): 1111-1118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!