欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (10): 1844-1850.doi: 10.3724/SP.J.1006.2009.01844

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆品种豫豆25抗疫霉根腐病基因的鉴定

范爱颖1,2,王晓鸣1,方小平2,武小菲1,朱振东1,*   

  1. 1中国农业科学院作物研究所,农作物基因资源与遗传改良重大科学工程,北京100081;2中国农业科学院油料作物研究所,湖北武汉 430062
  • 收稿日期:2009-02-08 修回日期:2009-05-31 出版日期:2009-10-12 网络出版日期:2009-08-07
  • 通讯作者: 朱振东,E-mail: zhuzd115@caas.net.cn
  • 基金资助:

    本研究由公益性行业(农业)科研专项(3-20),“十一五”国际科技支撑计划项目(2006BAD08A08,2006BAD08A15),中国农业科学院作物科学研究所中央级公益性科研院所基本科研业务费专项(082060302-06)资助。

Molecular Identification of Phytophthora Resistance Gene in Soybean Cultivar Yudou25

FAN Ai-Ying1,2,WANG Xiao-Ming1,FANG Xiao-Ping2,WU Xiao-Fei1,ZHU Zhen-Dong1*   

  1. 1 Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Genetic Resources and Improvement, Beijing 100081, China; 2 Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
  • Received:2009-02-08 Revised:2009-05-31 Published:2009-10-12 Published online:2009-08-07
  • Contact: ZHU Zhen-Dong,E-mail: zhuzd115@caas.net.cn

摘要:

大豆疫霉根腐病是大豆破坏性病害之一。防治该病的最有效方法是利用抗病品种。迄今,已在大豆基因组的9个座位鉴定了15个抗大豆疫霉根腐病基因,但是只有少数基因如Rps1cRps1k抗性在我国是有效的。因此,必需发掘新的抗疫霉根腐病基因,以满足抗病育种的需求。豫豆25具有对大豆疫霉菌的广谱抗性,是目前筛选出的最优异的抗源。以豫豆25为抗病亲本分别与豫豆21和早熟18杂交构建F2:3家系群体。两个群体的抗性遗传分析表明,豫豆25对疫霉根腐病的抗性由一个显性单基因控制,暂定名为RpsYD25。用SSR标记分析两个群体,RpsYD25均被定位于大豆分子遗传图谱N连锁群上。由于Rps1座位已作图在N连锁群,选择Rps1k基因中的一些SSR设计引物,检测RpsYD25Rps1座位的遗传关系。结果表明,一个SSR标记Rps1k6RpsYD25连锁,二者之间的遗传距离为19.4 cM。因此,推测RpsYD25可能是Rps1座位的一个新等位基因,也可能是一个新的抗病基因。

关键词: 大豆, 疫霉根腐病, 大豆疫霉菌, 抗病基因, SSR标记

Abstract:

Phytophthora root rot, caused by Phytophthora sojae, is a destructive disease on soybean. Use of resistant soybean cultivars is the most economical and effective method for controlling the disease. Up to now, nine loci for the resistance with 15 genes have been identified in soybean. However, only a few genes, such as Rps1c and Rps1k,were effectively resistant to populations of P. sojae in China, so mining new resistance genes is necessary greatly for the disease control. Soybean cv. Yudou 25 has broad spectrum resistance to P. sojae, and is an elite resistance source for Phytophthora root rot of soybean. To effectively utilize the cultivar in resistance breeding, in the present study, we identified and tagged the Phytophthora resistance gene in the cultivar by using SSR markers and bulked segregation analysis (BSA). Two F2:3 populations were developed for resistance genetic analysis and resistance gene mapping. Using hypocotyls inoculation technique at the seedling stage in the glasshouse, the reaction to P. sojae isolate PSMC1 (virulence type 1b, 1d, 3a, 3b, 3c, 4, 5, 6, 7) in 82 and 98 F2:3 families derived from two crosses of Yudou 21×Yudou 25 and Zaoshu 18×Yudou 25, respectively, were identified. The segregation ratio in both populations fit into 1:2:1 for homozygous resistant, segregating and homozygous susceptible, showing that the cultivar resistance to Phytophthora root rot is controlled by a dominant single gene, with the temporary name of RpsYD25. On the basis of linkage analysis with SSR markers, RpsYD25 was located on soybean molecular linkage group (MLG) N in both populations. Five SSR markers were associated with RpsYD25 in an order of Sat_208-Satt530-RpsYD25-Sat_084-Satt125-Sat_236 in F2:3 population from the cross of Yudou 21×Yudou 25, RpsYD25 was flanked by Satt530 and Sat_084 with a distance of 6.3 and 7.7 cM, respectively. Five SSR markers were linked to RpsYD25 in an order of Satt125-RpsYD25-Sat_275-Sat_266-Satt660-GMABAB in F2:3 population from the cross of Zaoshu 18×Yudou 25, RpsYD25 was flanked by Satt125 and Sat_275 with a distance of 7.9 and 7.8 cM, respectively. Because RpsYD25 was mapped on MLG N near to Rps1 locus, the genetic relationship of RpsYD25 and Rps1 was detected by using the selected SSR markers contained in the Rps1k allele sequence. A SSR marker Rps1k6 in Rps1k allele was found to be linked to RpsYD25 with a genetic distance of 19.4 cM in F2:3 population from the crosses Yudou 21×Yudou 25. Therefore, the Phytophthora resistance gene RpsYD25 in cv. Yudou 25 might be a novel allele at Rps1 locus, or a novel gene.

Key words: Glycine max, Phytophthora root rot, Phytophthora sojae, Resistance gene, SSR marker

[1] Han X-Z(韩晓增), He Z-H(何志鸿), Zhang Z-M(张增敏). Methods for controlling major diseases and pests in soybean. Soybean Bull (大豆通报), 1998, (6): 5-6 (in Chinese)

[2] Ma S-M(马淑梅), Ma C-Y(马成云), Yao W-Q(姚文秋). The investigation on the region harmed by soybean Phytophthora megasperma f. sp. glycinea kuan & Erwin and the research of pathogenicity diversity. Agric Technol (农业与技术), 2007, 27(2): 41-44 (in Chinese with English abstract)

[3] Chen Q-H(陈庆河), Weng Q-Y(翁启勇), Wang Y-C(王源超), Zheng X-B(郑小波). Identification and sequencing of ribosomal DNA-ITS of Phytophthora sojae in Fujian. Acta Phytopathol Sin (植物病理学报), 2004, 34(2): 112-116 (in Chinese with English abstract)

[4] Zhu Z-D(朱振东), Wang H-B(王化波), Wang X-M(王晓鸣), Chang R-Z(常汝镇), Wu X-F(武小菲). Distribution and virulence diversity of Phytophthora sojae in China. Sci Agric Sin (中国农业科学), 2003, 36(7): 793-799 (in Chinese with English abstract)

[5] Wang H(王华), Li G-Y(李国英), Zhan Y(战勇), Wang P(王朴), Zhang P(张萍). Identification of Phytophthora root rot of soybean in Xinjiang. Xinjiang Agric Sci (新疆农业科学), 2006, 43(2): 106-108 (in Chinese with English abstract)

[6] Schmitthenner A F. Problems and progress in control of Phytophthora root rot of soybean. Plant Dis, 1985, 69: 362-368

[7] Zhu Z-D(朱振东), Wang X-M(王晓鸣), Chang R-Z(常汝镇), Ma S-M(马淑梅), Wu X-F(武小菲), Tian Y-L(田玉兰). Identification of races of Phytophthora sojae and reaction of soybean germplasm resources in Heilongjiang province. Sci Agric Sin (中国农业科学), 2000, 33(1): 62-67 (in Chinese with English abstract)

[8] Chen X-L(陈晓玲), Zhu Z-D(朱振东), Wang X-M(王晓鸣), Xiao Y-N(肖炎农), Wu X-F(武小菲). Postulation of Phytophthora resistance genes in soybean cultivars or lines. Sci Agric Sin (中国农业科学), 2008, 41(4): 1227-1234 (in Chinese with English abstract)

[9] Zhu Z-D(朱振东), Huo Y-L(霍云龙), Wang X-M(王晓鸣), Huang J-B(黄俊斌), Wu X-F(武小菲). Screening for resistance sources to Phytophthora root rot in soybean. J Plant Genet Resour (植物遗传资源学报), 2006, 7(1): 24-30 (in Chinese with English abstract)

[10] Wang X-M(王晓鸣), Zhu Z-D(朱振东), Wang H-B(王化波), Wu X-F(武小菲), Tian Y-L(田玉兰). The resistance of soybean germplasm to Phytophthora root rot. J Plant Genetic Resour (植物遗传资源科学), 2001, 2(2): 22-26 (in Chinese with English abstract)

[11] Zhang S-Z(张淑珍), Wu J-J(吴俊江), Xu P-F(徐鹏飞), Li W-B(李文滨), Zuo Y-H(左豫虎), Qiu L-J(邱丽娟), Chang R-Z(常汝镇), Chen C(陈晨), Wang J-S(王金生), Yu A-L(于安亮), Jin L-M(靳立梅). Identification of virulence Phytophthora sojae in Heilongjiang province and the first report on race 15 in China. Chinese J Oil Crop Sci (中国油料作物学报), 2008, 30: 229-234 (in Chinese with English abstract)

[12] Li W-D(李卫东), Liang H-Z(梁慧珍), Lu W-G(卢为国), Xu J-J(许景菊). Several trait analysis of genetic background and yield of soybean Yudou 25. Seed (种子), 1999, (4): 78-79 (in Chinese)

[13] Gordon S G, St Martin S K, Dorrance A E. Rps8 maps to a resistance gene rich region on soybean molecular linkage group F. Crop Sci, 2006, 46: 168-173

[14] Sharp P J, Kreis M, Shewry P R, Gale M. Location of β-amylase sequence in wheat and its relatives. Theor Appl Genet, 1988, 75: 289-290

[15] Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating population. Proc Natl Acad Sci USA, 1991, 88: 9828-9832

[16] Demirbas A, Rector B G, Lohnes D G, Fioritto R J, Graef G L, Cregan P B, Shoemaker R C, Specht E. Simple sequence repeat markers linked to the soybean Rps genes for Phytophthora resistance. Crop Sci, 2001, 41: 1220-1227

[17] Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg L. MAPMAKER: An interactive computer package for constructing primary genetic maps of experimental and natural populations. Genomics, 1987, 1: 174-181

[18] Kosambi D D. The estimation of map distances from recombination values. Ann Eugen, 1944, 12: 172-175

[19] Bernard R L, Smith P E, Kaufmann M J, Schmitthenner A F. Inheritance of resistance to Phytophthora root and stem rot in the soybean. Agron J, 1957, 49: 391

[20] Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109: 122-128

[21] Cregan P B, Jarvik T, Bush A L, Shoemaker R C, Lark K G, Kahler A L, Kaya N, VanToai T T, Lohnes D G, Chung J, Specht J E. An integrated genetic linkage map of the soybean genome. Crop Sci, 1999, 39: 1464-1490

[22] Sandhu D, Schallock K G, Rivera-Velez N, Lundeen P, Cianzio S, Bhattacharyya M K. Soybean Phytophthora resistance gene Rps8 maps closely to the Rps3 region. J Hered, 2005, 96: 536-541

[23] Sugimoto T, Yoshida S, Watanabe K, Aino M, Kanto T, Maehawa K, Irie K. Identification of SSR markers linked to the Phytophthora resistance gene Rps1-d in soybean. Plant Breed, 2008, 127: 154-159

[24] Weng C, Yu K, Anderson T R, Poysa V. Mapping genes conferring resistance to Phytophthora root rot of soybean, Rps1a and Rps7. J Hered, 2001, 92: 442-446

[25] Bertrand C Y C, Mackill D J. Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci, 2008, 363: 557-572

[26] Bhattacharyya M K, Narayanan N N, Gao H, Santra D K, Salimath S S, Kasuga T, Liu Y, Espinosa B, Ellison L, Marek L, Shoemaker R, Gijzen M, Buzzell R I. Identification of a large cluster of coiled coil-nucleotide binding site-leucine rich repeat-type genes from the Rps1k region containing Phytophthora resistance genes in soybean. Theor Appl Genet, 2005, 111: 75-86

[27] Kasuga T, Salimath S S, Shi J, Gijzen M, Buzzell R I, Bhattacharyya M K. High resolution genetic and physical mapping of molecular markers linked to the Phytophthora resistance gene Rps1-k in soybean. Mol Plant Microbe Interact, 1997, 10: 1035-1044
Gao H, Bhattacharyya M. The soybean Phytophthora resistance locus Rps1-k encompasses coiled coil-nucleotide binging-leucine rich repeat-like genes and repetitive sequences. BMC Plant Biol, 2008, 8: 29
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[7] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[8] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[9] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[10] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[11] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[12] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[13] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[14] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[15] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!