欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (10): 1936-1941.doi: 10.3724/SP.J.1006.2009.01936

• 研究简报 • 上一篇    下一篇

应用SRAP标记分析黑芝麻核心种质遗传多样性

车卓1,2,张艳欣2,**,孙建2,张秀荣2,*,尚勋武1,王化俊1   

  1. 1甘肃农业大学/甘肃省作物遗传改良与种质创新重点实验室,甘肃兰州730070;2中国农业科学院油料作物研究所,湖北武汉430062
  • 收稿日期:2009-01-14 修回日期:2009-04-23 出版日期:2009-10-12 网络出版日期:2009-08-07
  • 通讯作者: 张秀荣,E-mail: zhangxr@oilcrops.cn
  • 基金资助:

    本研究由国家科技基础条件平台项目(2005DKA21001-20),国家科技支撑计划项目(2006BAD13B05-2),农业部物质保护项目(NB08-2130135-34,35)资助。

Genetic Diversity Analysis of Black Sesame(Sesamum indicum DC) Core Collection of China Using SRAP Markers

CHE Zhuo1,2,ZHANG Yan-Xin2,**,SUN Jian2,ZHANG Xiu-Rong2,*,SHANG Xun-Wu1,WANG Hua-Jun1   

  1. 1 Gansu Agricultural University / Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Enhancement, Lanzhou 730070, China; 2 Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
  • Received:2009-01-14 Revised:2009-04-23 Published:2009-10-12 Published online:2009-08-07
  • Contact: ZHANG Xiu-Rong,E-mail: zhangxr@oilcrops.cn

摘要:

利用SRAP分子标记技术对中国芝麻资源核心收集品中的黑芝麻种质进行遗传多样性分析。结果表明,13对引物组合对100份黑芝麻核心种质共扩增出稳定清晰的条带182条,其中多态性条带126条,占69.2%,每对引物组合的条带数和多态性带数分别为14.0个和9.7个;供试材料间成对遗传相似系数介于0.469~0.986,平均为0.726,通过UPGMA法,在遗传相似系数为0.68处可将供试材料聚为5个类群,表明黑芝麻核心种质具有较丰富的遗传多样性,聚类结果与地理分布没有明显的关系;遗传多样性指数是南方黑芝麻核心种质(0.3557)>中部种质(0.3415)>北方种质(0.2986)。本研究结果较全面反映了中国保存的黑芝麻种质资源遗传多样性特点,为我国黑芝麻资源进一步考察收集和引进,以及优异黑芝麻基因资源挖掘和育种利用提供了理论依据。

关键词: 黑芝麻, 核心种质, SRAP, 遗传多样性

Abstract:

China has a long history and rich germplasm resources for growing black sesame. Black sesame is well used because of its nutrition superior to black rice and black soybean. However, Research on black sesame is relatively less than that on other crops. In the paper, genetic diversity of black sesame core collection of China was analyzed using SRAP (sequence-related amplified polymorphism) markers. The results showed that 13 SRAP primer combinations were employed to evaluate the genetic diversity of 100 black sesame accessions, a total of 182 amplified fragments were detected and 126 of them were polymorphic, the polymorphism percentage was 69.2%, the number of amplified fragments and polymorphic fragments of each primer combination were 14.0 and 9.7, respectively. The 100 accessions were grouped into five clusters at genetic similarity of 0.68, indicating the genetic diversity of these accessions was abundant. As regards geographic regions, Shannon's information index of black sesame accessions in south China (0.3557) was the highestthe followings were that in central regions of China (0.3415) and north China (0.2986). The characteristics of genetic diversity of black sesame core collection of China were fully revealed in this study, which provided the theoretical foundations for further exploring, collecting and introducing black sesame germplasm as well as mining and utilizing excellent black sesame germplasm in the future.

Key words: Black sesame, Core collection, SRAP, Genetic diversity

[1] Shen M(沈梅). Measurements oil trace elements of black sesame and white sesame. Chin J Health Lab Tech (中国卫生检验杂志), 2007, 17(2): 2309-2310 (in Chinese with English abstract)

[2] Chen H-X(陈和兴), Liu F-L(刘凤兰), Zhao Y-Z(赵应忠). Breeding for Zhongzhi 9, a black seed coat sesame cultivar with high quality. Oil Crop Chin (中国油料), 1994, 16(4): 53-58 (in Chinese with English abstract)

[3] Xiao T-X(肖唐华), Feng X-Y(冯祥运), Zhang X-R(张秀荣). Analysis of the distribution and main characteristics of black seed coat sesame germplasm in china. Oil Crop Chin (中国油料), 1992, 14(2): 31-34 (in Chinese with English abstract)

[4] Le M-W(乐美旺), Zhang D-X(张冬仙), Xiong Y-P(熊永鹏), Zhou H-Y(周红英). Principal component analysis on quantitative characters and its application in black sesame. Oil Crop Chin (中国油料), 1995, 17(3): 72-76 (in Chinese with English abstract)

[5] Bhat K V, Babrekar P P, Lakhanpaul S. Study of genetic diversity in Indian and exotic sesame (Sesamum indicum L.) germplasm using random amplified polymorphic DNA (RAPD) markers. Euphytica, 1999, 110: 21-33

[6] Kim D H, Zur G, Danin P Y, Lee S W, Shim K B, Kang C W, Kashi Y. Genetic relationships of sesame germplasm collection as revealed by inter-simple sequence repeats. Plant Breed, 2002, 121: 259-262

[7] Ercan A G, Taskin M, Turgut K. Analysis of genetic diversity in Turkish sesame (Sesamum indicum L.) populations using RAPD markers. Genet Resour Crop Evol, 2004, 51: 599-607

[8] Laurentin H E, Karlovsky P. Genetic relationship and diversity in a sesame (Sesamum indicum L.) germplasm collection using amplified fragment length polymorphism (AFLP). BMC Genetics,2006, 7: 10

[9] Laurentin H E, Karlovsky P. AFLP fingerprinting of sesame (Sesamum indicum L.) cultivars: Identification, genetic relationship and comparison of AFLP informativeness parameters. Genet Resour Crop Evol, 2007, 54: 1437-1446

[10] Laurentin H E, Karlovsky P. Relationship between metabolic and genomic diversity in sesame (Sesamum indicum L.). BMC Genomics, 2008, 9: 250

[11] Zhang X-R(张秀荣), Chen K-R(陈坤荣), Peng J(彭俊), Xu Z-Y(许泽永). The RAPD analysis and genetic diversity of selected sesame germplasms. Chin J Oil Crop Sci (中国油料作物学报), 2004, 26(4): 34-37 (in Chinese with English abstract)

[12] Zhang P(张鹏), Zhang H-Y(张海洋), Guo W-Z(郭旺珍), Zheng Y-Z(郑永战), Wei L-B(魏利斌), Zhang T-Z(张天真). Genetic diversity analysis of Sesamum indicum L. germplasms using SRAP and EST-SSR markers. Acta Agron Sin (作物学报), 2007, 33(10): 1696-1702 (in Chinese with English abstract)

[13] Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica. Theor Appl Genet, 2001, 103: 455-461

[14] Zhang X R, Zhao Y Z, Cheng Y, Feng X Y, Guo Q Y, Zhou M D, Toby Hodgkin. Establishment of sesame germplasm core collection in China. Genet Resour Crop Evol, 2000, 47: 273-279

[15] Doyle J J, Doyle J L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull, 1987, 19: 11-15

[16] Che Z(车卓), Zhang Y-X(张艳欣), Sun J(孙建), Huang B(黄波), Zhang X-R(张秀荣). Establishment and optimization of SRAP reaction system in sesame. Chin Agric Sci Bull (中国农学通报), 2008, 24(10): 74-77 (in Chinese with English abstract)

[17] Bassam B, Caetano-Anolles G, Gresshoff P M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem, 1991, 196: 80-83

[18] Chen C-Y(陈翠云). Sesame Cultivars Resources in China (中国芝麻品种志), Beijing: Agriculture Press, 1990. pp 5-33 (in Chinese)

[19] Oil Crop Research Institute of CAAS (中国农业科学院油料作物研究所). The Catalogue of Varietal Germplasm Resources of sesame in China (中国芝麻品种资源目录), Vol 3. Beijing: China Agricultural Scientech Press, 1997 (in Chinese)

[20] Wen Y-C(文雁成), Wang H-Z(王汉中), Shen J-X(沈金雄), Liu G-H(刘贵华), Zhang X-F(张书芬). Analysis of genetic diversity and genetic basis of Chinese rapeseed cultivars (Brassica napus L.) by sequence-related amplified polymorphism markers. Sci Agric Sin (中国农业科学), 2006, 39(2): 246-256 (in Chinese with English abstract)

[21] Budak H, Shearman R C, Parmaksiz I, Gaussoin R E, Riordan T P, Dweikat I. Molecular characterization of buffalo grass germplasm using sequence-related amplified polymorphism markers. Theor Appl Genet, 2004, 108: 328-334

[22] Ferriol M, Pioó B, Nuez E. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor Appl Genet, 2003, 107: 271-282

[23] Wang H-Z(王华忠), Wu Z-D(吴则东), Wang X-W(王晓武), Fang Z-Y(方智远). Analysis of the genetic diversity in different types of sugar beets by SRAP and SSR markers. Acta Agron Sin (作物学报), 2008, 34(1): 37-46 (in Chinese with English abstract)

[24] Li W(李武), Ni W(倪薇), Lin Z-X(林忠旭), Zhang X-L(张献龙). Genetic diversity analysis of sea-island cotton cultivars using SRAP markers. Acta Agron Sin (作物学报), 2008, 34(5): 893-898 (in Chinese with English abstract)

[25] Jin W-L(金文林), Wen Z-X(文自翔), Pu S-J(濮绍京), Zhao B(赵波). Genetic diversity and evolution of Adzuki bean (Vigna angularis) germplasm resources based on RAPD markers. Sci Agric Sin (中国农业科学), 2005, 38(2): 241-249 (in Chinese with English abstract)

[26] Chen H(陈辉), Fan Y-H(范源洪), Shi X-W(史宪伟), Cai Q(蔡青), Zhang M(张明), Zhang Y-P(张亚平). Research on genetic diversity and systemic evolution in Saccharum spontaneum L. Acta Agron Sin (作物学报), 2001, 27(5): 645-652 (in Chinese with English abstract)
[27] Gai J-Y(盖钧镒), Xu D-H(许东河), Gao Z(高忠), Yoshiya S(岛本义也), Jun A(阿部纯), Hirofumi F(福士泰史), Shunji K(北岛俊二). Studies on the evolutionary relationship among Eco-types of G. max and G. soja in China. Acta Agron Sin (作物学报), 2000, 26(5): 513-520 (in Chinese with English abstract)
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[3] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[4] 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93.
[5] 孙倩, 邹枚伶, 张辰笈, 江思容, Eder Jorge de Oliveira, 张圣奎, 夏志强, 王文泉, 李有志. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49.
[6] 赵孟良,王丽慧,任延靖,孙雪梅,侯志强,杨世鹏,李莉,钟启文. 257份菊芋种质资源表型性状的遗传多样性[J]. 作物学报, 2020, 46(5): 712-724.
[7] 张红岩,杨涛,刘荣,晋芳,张力科,于海天,胡锦国,杨峰,王栋,何玉华,宗绪晓. 利用EST-SSR标记评价羽扇豆属(Lupinus L.)遗传多样性[J]. 作物学报, 2020, 46(3): 330-340.
[8] 刘易科,朱展望,陈泠,邹娟,佟汉文,朱光,何伟杰,张宇庆,高春保. 基于SNP标记揭示我国小麦品种(系)的遗传多样性[J]. 作物学报, 2020, 46(02): 307-314.
[9] 叶卫军,陈圣男,杨勇,张丽亚,田东丰,张磊,周斌. 绿豆SSR标记的开发及遗传多样性分析[J]. 作物学报, 2019, 45(8): 1176-1188.
[10] 吴迷,汪念,沈超,黄聪,温天旺,林忠旭. 基于重测序的陆地棉InDel标记开发与评价[J]. 作物学报, 2019, 45(2): 196-203.
[11] 卢媛,艾为大,韩晴,王义发,李宏杨,瞿玉玑,施标,沈雪芳. 糯玉米自交系SSR标记遗传多样性及群体遗传结构分析[J]. 作物学报, 2019, 45(2): 214-224.
[12] 徐益,张列梅,郭艳春,祁建民,张力岚,方平平,张立武. 黄麻核心种质的遴选[J]. 作物学报, 2019, 45(11): 1672-1681.
[13] 薛延桃,陆平,史梦莎,孙昊月,刘敏轩,王瑞云. 新疆、甘肃黍稷资源的遗传多样性与群体遗传结构研究[J]. 作物学报, 2019, 45(10): 1511-1521.
[14] 刘洪,徐振江,饶得花,鲁清,李少雄,刘海燕,陈小平,梁炫强,洪彦彬. 基于形态学性状和SSR标记的花生品种遗传多样性分析和特异性鉴定[J]. 作物学报, 2019, 45(1): 26-36.
[15] 杨文娟,张艳欣,王林海,魏鑫,黎冬华,高媛,刘盼,张秀荣. 一个芝麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2018, 44(7): 1010-1020.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!