欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (11): 1967-1972.doi: 10.3724/SP.J.1006.2009.01967

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻新型卷叶突变体rl12t)的遗传分析和基因定位

罗远章,赵芳明,桑贤春,凌英华,杨正林,何光华*   

  1. 西南大学水稻研究所/农业部西南作物遗传改良与育种重点开放实验室,重庆400715
  • 收稿日期:2009-05-22 修回日期:2009-07-22 出版日期:2009-11-12 网络出版日期:2009-09-07
  • 通讯作者: 何光华,E-mail:hegh@swu.edu.cn
  • 基金资助:

    本研究由教育部新世纪优秀人才支撑计划项目,重庆市杰出青年基金项目(2008BA1033),国家科技支撑计划项目(2006BAD01A01),国家转基因生物新品种培育科技重大专项(2009ZX08009-109B)资助。

Genetic Analysis and Gene Mapping of a Novel Rolled Leaf Mutant rl12(t) in Rice

LUO Yuan-Zhang,ZHAO Fang-Ming,SANG Xian-Chun,LING Ying-Hua,YANG Zheng-Lin,HE Guang-Hua*   

  1. Rice Research Institute,Southwest University/Key Laboratory of Southwest Crop Genetic Improvement and Breeding,Ministry of Agriculture,Chongqing 400715,China
  • Received:2009-05-22 Revised:2009-07-22 Published:2009-11-12 Published online:2009-09-07
  • Contact: HE Guang-Hua,E-mail:hegh@swu.edu.cn

摘要:

叶片是水稻光合作用的重要器官,适度卷曲有利于改善群体光照、提高光能利用率,卷叶基因是培育理想株型的重要资源。本研究利用EMS诱变优良恢复系缙恢10号,获得了一个水稻新型卷叶突变体,该性状受一对显性基因控制,表现为新叶不卷,老叶全卷,而成熟叶片叶上部约1/3卷曲、中下部正常,叶绿素含量极显著高于对照,暂被命名为rl12(t)。利用SSR标记将该基因定位于第10染色体SWU-1SWU-2之间,遗传距离分别是1.5 cM0.2 cM。目前,类似于rl12(t)卷叶突变体表型未见报道,RL12(t)是唯一一个在第10染色体被分子定位的显性卷叶主基因。研究结果为该卷叶基因的克隆和功能分析奠定了基础,对于揭示卷叶机理及应用于株型改良具有重要的意义。

关键词: 水稻, 显性卷叶基因, 遗传分析, 基因定位

Abstract:

Leaf is an important organ in photosynthesis, its moderate rolling could facilitate the improvement of plant population’s structure and enhancelight-use efficiency, which is significant in ideotype breeding. Recently, more attention has been paid to the identification of rice rolled leaf mutants and related gene cloning by breeders and geneticists. This paper reported a rolled leaf mutant, temporarily named rl12(t), from the restorer line Jinhui10 treated by EMS. In the mutant, the initializing leaves didn’t roll, the mature leaves curled the upper 1/3 section of them and the older mature leaves rolled completely, the pigment contents increased significantly.To date, such phenotype has never been reported. One CMS line Xinong 1A with normal leaves was crossed with the rl12(t) mutant, the F1/F2 populations were used for genetic analysis, suggesting that the mutant trait were controlled completely by one single dominant nuclear gene. rl12(t) was finally located on the chromosome 10 between SWU-1 and SWU-2 with genetic distances of 1.5 and 0.2 cM, respectively. There has been no rolled leaf gene reported on this chromosome. So the RL12(t) should be novel, and also the unique dominant rolled leaf gene mapped by molecular markers up to now. The results provide a basis for RL12(t) gene cloning and functional analysis, as well as mechanism studies of rolled leaf and the application in plant-type breeding.

Key words: Oryza sattiva, Dominant rolled leaf gene, Genetic analysis, Gene mapping

[1] Yuan L-P(袁隆平). Hybrid rice breeding for super high yield. Hybrid Rice (杂交水稻), 1997, 12(6): 1-6 (in Chinese with English abstract)

[2] Shen F-C(沈福成). Several opinions on how to use rolled leaf character of rice in breeding. J Guizhou Agric Sci (贵州农业科学), 1983, (5): 6-8 (in Chinese with English abstract)

[3] Chen Z-X(陈宗祥), Pan X-B(潘学彪), Hu J(胡俊). Relationship between rolled leaf and ideal plant type of rice (Oryza sativa L.). J Jiangsu Agric Res (江苏农业研究), 2001, 22(4): 88-91 (in Chinese with English abstract)

[4] Chen Z-X(陈宗祥), Chen G(陈刚), Pan X-B(潘学彪). Genetic expression and effects of rolled leaf gene Rl(t) in hybrid rice(Oryza sativa). Acta Agron Sin (作物学报), 2002, 28(6): 847-851 (in Chinese with English abstract)

[5] Lang Y-Z(郎有忠), Zhang Z-J(张祖建), Gu X-Y(顾兴友), Yang J-C(杨建昌), Zhu Q-S(朱庆森). Physiological and ecological effects of crimpy leaf character in rice (Oryza sativa L.): I. Leaf orientation, canopy structure and light distribution. Acta Agron Sin (作物学报), 2004, 30(9): 883-887 (in Chinese with English abstract)

[6] Lang Y-Z(郎有忠), Zhang Z-J(张祖建), Gu X-Y(顾兴友), Yang J-C(杨建昌), Zhu Q-S(朱庆森). Physiological and ecological effects of crimpy leaf character in rice (Oryza sativa L.): II. Photosynthetic character, dry mass production and yield forming. Acta Agron Sin (作物学报), 2004, 30(8): 806-810 (in Chinese with English abstract)

[7] Yu D(余东), Wu H-B(吴海滨), Yang W-T(杨文韬), Gong P-T(巩鹏涛), Li Y-Z(李有志), Zhao D-G(赵德刚). Genetic analysis and mapping of the unilateral rolled leaf trait of rice mutant B157. Mol Plant Breed (分子植物育种), 2008, 6(2): 220-226 (in Chinese with English abstract)

[8] Li S-G(李仕贵), Ma Y-Q(马玉清), He P(何平), Li H-Y(黎汉云), Chen Y(陈英), Zhou K-D(周开达), Zhu L-H(朱立煌). Genetic analysis and mapping the flag leaf roll in rice (Oryza sativa L.). J Sichuan Agric Univ (四川大学学报), 1998, 16(4): 391-393 (in Chinese with English abstract)

[9] Shao Y-J(邵元健), Chen Z-X(陈宗祥), Zhang Y-F(张亚芳), Chen E-H(陈恩会), Qi D-C(祁顶成), Liao J(缪进), Pan X-B(潘学彪). One major QTL mapping and physical map construction for rolled leaf in rice. Acta Genet Sin (遗传学报), 2005, 32(5): 501-506 (in Chinese with English abstract)

[10] Yan C J, Yan S, Zhang Z Q, Liang G H, Lu J F, Gu M H. Genetic analysis and gene fine mapping for a rice novel mutant (rl9(t)) with rolling leaf character. Chin Sci Bull, 2006, 51(1): 63-69

[11] Luo Z K, Yang Z L, Zhong B Q, Li Y F, Xie R, Zhao F M, Ling Y H, He G H. Genetic analysis and fine mapping of a dynamic rolled leaf gene, RL10(t), in rice (Oryza sativa L.). Genome, 2007, 50: 811-817

[12] Shi Y-F(施勇烽), Chen J(陈洁), Liu W-Q(刘文强), Huang Q-N(黄奇娜), Shen B(沈波), Leung H, Wu J-L(吴建利). Genetic analysis and gene mapping of a novel rolled leaf mutant in rice (Oryza sativa L.). Sci China (Ser C)(中国科学·C辑), 2009, 39(4): 407-412 (in Chinese)

[13] Xia L(夏令), Chen L(陈亮), Guo C-M(郭迟鸣), Zhang H-X(张红心), Zhao Z(赵政), Shen M-S(沈明山), Chen L(陈亮). Genetic analysis and mapping of rice (Oryza sativa L.) sd-sl mutant. J Xiamen Univ (Nat Sci) (厦门大学学报·自然科学版), 2007, 46(6): 847-851 (in Chinese with English abstract)

[14] Wang D K,Liu H Q, Li K L, Li S J, Tao Y Z. Genetic analysis and gene mapping of a narrow leaf mutant in rice (Oryza sativa L.). Chin Sci Bull, 2009, 54(5): 752-758

[15] Shao Y J, Pan C H, Chen Z X, Zuo S M, Zhang Y F, Pan X B. Fine mapping of an incomplete recessive gene for leaf rolling in rice (Oryza sativa L.). Chin Sci Bull, 2005, 50(21): 2466-2472

[16] Shen G-Z(沈革志), Wang X-Q(王新其), Yin L-Q(殷丽青), Wang J(王江), Li L(李琳), Zhang J-L(张景六). Genetic analysis of a rolled-leaf mutant in rice population of T-DNA insertion. Acta Biol Exp Sin (实验生物学报), 2003, 36(6): 459-464(in Chinese with English abstract)

[17] Chen Z-G(陈兆贵), Wang J(王江), Zhang Z-M(张泽民), Liu F(刘芳), Zhu H-T(朱海涛), Wang X-S(宛新杉), Zhang J-L(张景六), Zhang G-Q(张桂权). Genetic analysis of a rolled leaf mutation by T-DNA (Ds) insertion in Oryza sativa. J South China Agric Univ (华南农业大学学报), 2006, 27(1): 1-4 (in Chinese with English abstract)

[18] Zou Q(邹琦). Experimental Guide for Plant Physiology (植物生理学实验指导). Beijing: China Agriculture Press, 2000. pp 72-75 (in Chinese)

[19] Rogers S O, Bendich A J. Extraction of DNA from plant tissues. Plant Mol Biol Manual, 1988, A6: 1-10

[20] Sang X-C(桑贤春), He G-H(何光华), Zhang Y(张毅), Yang Z-L(杨正林), Pei Y(裴炎). The simple gain of templates of rice genomes DNA for PCR. Hereditas(遗传), 2003, 25(6): 705-707 (in Chinese with English abstract)

[21] Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLPs) in rice (Oryza sativa L.). Mol Gen Genet, 1996, 252: 597-607

[22] Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174-181

[23] Kosambi D D. The estimation of map distances from recombination values. Ann Eugen, 1944, 12: 172-175

[24] Erik H M, Chen Y Z, Hubbart S, Peng S B, Horton P. Interaction between senescence and leaf orientation determine in situpatterns of photosynthesis and photoinhibition in field-grown rice. Plant Physiol,1999, 119: 553-563

[25] Peter H. Prospects for crop improvement through the genetic manipulation of photosynthesis: morphological and biochemical aspects of light capture. J Exp Bot, 2000, 51: 475-485

[26] Sinclair T R, Sheehy J E. Erect leaves and photosynthesis in rice. Science, 1999, 283: 1456-1457

[27] Meng J(孟军), Chen W-F(陈温福), Xu Z-J(徐正进), Li L-X(李磊鑫), Zhou S-Q(周淑清). Study on photosynthetic rate and chlorophyll content. J Shenyang Agric Univ(沈阳农业大学学报), 2001, 32(4): 247-249(in Chinese with English abstract)

[28] Ou Z-Y(欧志英), Peng C-L(彭长连), Yang C-W(阳成伟), Lin G-Z(林桂珠), Duan J(段俊), Wen X(温学). High efficiency photosynthetic characteristics in flag leaves of super high-yielding rice. J Trop Subtrop Bot (热带亚热带植物学报), 2003, 11(1): 1-6 (in Chinese with English abstract)

[29] Yan S, Yan C J, Zeng X H, Yang Y C, Fang Y W, Tian C Y, Sun Y W, Cheng Z K, Gu M H. Rolled leaf 9, encoding a GARP protein, regulates the leaf abaxial cell fate in rice. Plant Mol Biol, 2008, 68: 239-250

[30] Zhang G H, Xu Q, Zhu X D, Qian Q, Xue H W. SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf Abaxial cell development. Plant Cell, 2009, 21: 719-735

[31] Deng J-X(邓加省), Yu X-Q(余显权), Wang J(王锦), Gao G-Z(高贵忠). Genetic analysis of the leaf rolling characteristics the GuiNongTongHui. J Swau Agric Sci (西南农业学报), 2006, 19(6): 1005-1008 (in Chinese with English abstract)

[32] Gao Y-H(高艳红), Lü C-G(吕川根), Wang M-Q(王茂青), Wang P(王澎), Yan X-Y(闫晓燕), Xie K(谢坤), Wan J-M(万建民). QTL mapping for rolled leaf gene in rice. J Jiangsu Agric Sci (江苏农业学报), 2007, 23(1): 5-10 (in Chinese with English abstract)

[33] Micol L J, Hake S. The development of plant leaves. Plant Physiol, 2003, 131: 389-394

[34] Byrne M, Timmermans M, Kidner C, Martienssen R. Development of leaf shape. Curr Opin Plant Biol, 2001, 4: 38-43

[35] Talbert P B, Adler H T, Parks D W, Comai L. The REVOLUTA gene is necessary for apical meristem development and for limiting cell divisions in the leaves and stems of Arabidopsis thaliana. Genes Dev, 1995, 121: 2723-2735

[36] Ratcliffe O J, Riechmann J L, Zhang J Z. INTERFASCICULARF IBERLESS1 is the same gene as REVOLUTA. Plant Cell, 2000, 12: 315-317

[37] McConnell J R, Emery J, Eshed Y, Bao Y, Bowman J, Barton M K. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature, 2001, 411: 709-713

[38] Juarez M T, Kui J S, Thomas J, Heller B A, Timmermans M C. MicroRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature, 2004, 428: 84-88

[39] Mallory A C, Reinhart B J, Jones-Rhoades M W, Tang G, Zamore P D, Barton M K, Bartel D P. microRNA control of PHABULOSA in leaf development: Importance of pairing to the microRNA 5' region. EMBO J, 2004, 23: 3356-3364

[40] Vaucheret H, Vazquez F,Crété P, Bartel D P. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA path-way are crucial for plant development. Genes Dev, 2004, 18: 1187-1197
Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, Fraaije M W, Sekiguchi H. NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol Genet Genomics, 2008, 279: 499-507
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[13] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!