作物学报 ›› 2010, Vol. 36 ›› Issue (1): 85-91.doi: 10.3724/SP.J.1006.2010.00085
王磊,朱一超**,蔡彩萍,张天真,郭旺珍*
WANG Lei,ZHU Yi-Chao**,CAI Cai-Ping,ZHANG Tian-Zhen,GUO Wang-Zhen*
摘要:
棉纤维发育突变体是克隆棉纤维发育关键基因和阐明其发育分子机理的优异资源。陆地棉李氏超短纤维突变体(Li1li1)是显性单基因突变体,表现为显性纯合体(Li1Li1)致死,显性杂合时(Li1li1)表型为茎秆扭曲、叶片卷曲和纤维短至6 mm,而隐性纯合体(li1li1)则表现为株型和纤维发育都正常。本文对开花后10 d的李氏纤维发育正常材料(li1li1)和超短纤维突变体(Li1li1)胚珠纤维混合体进行mRNA差异显示反转录PCR(DDRT-PCR)分析,获得2条在李氏纤维发育正常材料中上调表达的差异片段。测序及DNA序列的生物信息学分析表明该差异片段分别与编码谷氨酸脱羧酶和质子焦磷酸酶的基因有较高同源性。通过电子拼接,5¢RACE和全长cDNA序列验证,克隆了棉花的谷氨酸脱羧酶(GhGAD)和质子焦磷酸酶(GhVP1)基因全长cDNA, 进一步对其功能和染色体定位进行了初步分析。转录水平分析表明,这两个基因在棉花根、茎、叶和纤维中组成性表达,在棉纤维中优势表达。利用本实验室陆地棉遗传标准系TM-1和海岛棉海7124培育的含140个单株的BC1作图群体,将GhGAD和 GhVP1分别定位在第12条染色体和第8条染色体。
[1] Fryxell P A. The Natural History of the Cotton Tribe. College Station, TX: Texas A&M University Press, 1979 [2] Basra A S, Malik C P. Development of cotton fiber. Inter Rev Cytol, 1984, 89: 65-113 [3] Orford S J, Timmis J N. Abundant mRNAs specific to the developing cotton fiber. Theor Appl Genet, 1997, 94: 909-918 [4] Turley R B, Ferguson D L. Changes of ovule proteins during early fiber developing in a normal and a fiberless line of cotton (Gossypium hirsutum L.). J Plant Physiol, 1996, 149: 695-702 [5] Dhindsa R S, Beasley R B, Ting I P. Osmoregulation in cotton fiber: Accumulation of potassium and malate during growth. Plant Physiol, 1975, 56: 394-398 [6] Basra A S, Malik C P. Dark metabolism of CO2 during elongation of two cottons differing in fiber lengths. J Exp Bot, 1983, 34: 1-9 [7] John M E, Crow L J. Gene expression in cotton (Gossypium hirsutum L.) fiber: Cloning of the mRNAs. Proc Natl Acad Sci USA, 1992, 89: 5769-5773 [8] Kohel R J. Linkage tests in upland cotton, Gossypium hirsutum L. Crop Sci, 1972, 12: 66-69 [9] Karaca M, Saha S, Jenkins J N, Zipf A, Kohel R, Stelly D M. Simple sequence repeat (SSR) markers linked to the Ligon Lintless (Li1) mutant in cotton. J Hered, 2002, 93: 221-224 [10] Wan C Y, Wilkins T A. A modified hot borate method significantly enhances the yield of high quality RNA from cotton (Gossypium hirsutum L.). Anal Biochem, 1994, 223: 7212 [11] Liang P, Pardee A B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science, 1992, 257: 967-971 [12] Winer J, Jung C K, Shackel I, Williams P M. Development and validation of real-time quantitative reverse transcriptase polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal Biochem, 1999, 270: 41-49 [13] Han Z G, Guo W Z, Song X L. Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboretum in allotetraploid cotton. Mol Genet Genom, 2004, 272: 308-327 [14] Guo W, Cai C, Wang C, Zhao L, Wang L, Zhang T. A preliminary analysis of genome structure and composition in Gossypium hirsutum. BMC Genom, 2008, 9: 314 [15] Van-Ooijen J W, Voorrips R E. JoinMapR Version 3.0: Software for the Calculation of Genetic Linkage Maps, CPRO-DLO, Wageningen, 2001 [16] Liu R H(刘仁虎), Meng J L(孟金陵). MapDraw: A Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas (遗传), 2003, 25(3): 317-321 (in Chinese with English abstract) [17] Roberts E, Frankel S. Gamma-Aminobutyric acid in brain: Its formation from glutamic acid. J Biol Chem, 1950, 187: 55 [18] Satyanarayan V, Nair P M. Enzymolgy and possible roles of 4-aminobutyrate in higher plants. Phytochem, 1990, 29: 367-375 [19] Baum G, Chen Y, Arazi T, Takatsuji H, Fromm H. A plant glutamate decarboxylase containing a calmodulin binding domain.J Biol Chem, 1993, 268: 19610-19617 [20] Rea P A. Vacuolar H+-translocating pyrophosphatases: a new category of ion translocase. Trends Biochem Sci, 1992, 17: 348-353 [21] Rea P A, Poole R J. Vacuolar H+-translocating pyrophosphatase. Plant Mol Biol, 1993, 44: 157-180 [22] Zhen R G, Kim E J, Rea P A.The molecular and biochemical basis of pyrophosphate-energized proton translocation at the vacuolar membrane. Adv Bot Res, 1997,25: 297-337 [23] Maeshima M. Vacuolar H+-pyrophosphatase. Biochim Biophys Acta, 2000, 1465: 37-51 [24] Smart L B, Vojdani F, Maeshima M, Wilkins T A. Genes involved in osmoregulation during turgor-driven cell expansion of developing cotton fibers are differentially regulated. Plant Physiol, 1998, 116: 1539-1549 Roberto A G, Jisheng L, Soledad U, Lien M D, Gethyn J A, Seth L A, Gerald R F. Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci USA, 2001, 98: 11444-11449 |
[1] | 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058. |
[2] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[3] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[4] | 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552. |
[5] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[6] | 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409. |
[7] | 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689. |
[8] | 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815. |
[9] | 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623. |
[10] | 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826. |
[11] | 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671. |
[12] | 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437. |
[13] | 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521. |
[14] | 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120. |
[15] | 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862. |
|