欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (1): 76-84.doi: 10.3724/SP.J.1006.2010.00076

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

控制双亲混合选择对不同玉米合成群体的改良效应

邹超英,李芦江,杨克诚*,潘光堂,荣廷昭   

  1. 四川农业大学玉米研究所/教育部作物基因资源与遗传改良重点实验室,四川雅安625014
  • 收稿日期:2009-05-31 修回日期:2009-08-30 出版日期:2010-01-12 网络出版日期:2009-11-17
  • 通讯作者: 杨克诚, Tel: 0835-2882465
  • 基金资助:

    本研究由国家“十一五”科技攻关计划项目(2006BAD13B03),教育部长江学者和创新团队发展计划项目(IRT0453)和四川省玉米育种攻关项目资助。

Effects of Improvement by Mass Selection on the Different Maize Synthetic Populations

ZOU Chao-Ying,LI Lu-Jiang,YANG Ke-Cheng*,PAN Guang-Tang,RONG Ting-Zhao   

  1. Maize Research Institute, Sichuan Agricultural University/Key Laboratory of Crop Genetic Resources and Improvement,Ya’an 625014,China
  • Received:2009-05-31 Revised:2009-08-30 Published:2010-01-12 Published online:2009-11-17
  • Contact: YANG Ke-Cheng, Tel: 0835-2882465

摘要:

基于田间试验的统计分析和SSR分子标记的遗传参数评估,分析了3个玉米人工合成群体GP3GP4GP54轮控制双亲混合选择的改良效应。结果表明,多数性状在不同群体及不同轮回间存在真实的遗传差异,粒深遗传增益以GP4GP5GP3,穗行遗传增益以GP3GP5GP4,各个群体C4的粒深、穗行均值都显著或极显著大于C0,直接选择效应显著;株高和穗位高随选择周期增加呈明显增加趋势,且GP4的增幅显著大于GP3GP5,单株产量及穗粗的遗传增益以GP4大于GP3GP5,各群体多数产量性状的均值以C4显著大于C0,相关选择效应显著;除株高、穗位高外,其他性状GCA变异群体间差异达显著或极显著水平,GP5多数产量性状的GCA优于GP3GP4,各群体多数产量性状的GCA效应值随改良进展呈增加趋势,对照优势大于8%的大部分测交组合均为各群体C4所配组合,间接选择效应显著;随改良世代进行,群体部分性状的表型变异系数虽有所减小,但变化幅度不大;基于SSR分子标记估算的群体内遗传相似系数,GP3GP4改良后代呈略增趋势,GP5变化不大,对于群体基因型数,GP3GP4随改良代数增加呈略减趋势,GP5呈略增趋势。上述结果说明,适度控制双亲混合选择在有效改良群体的同时,还能较好地保持群体的遗传多样性,但不同基础群体及不同性状间,其改良效应存在一定的差异。

关键词: 玉米, 群体改良, 选择效应, 遗传多样性, SSR

Abstract:

On the basis ofstatistical analysis offield test and genetic parameters evaluation by Simple Sequence Repeat (SSR) markers, the experiment was conducted with three maize synthetic populations GP3, GP4 and GP5 with mass selection for 4 cycles. The results showed that there existed genetic differences in most traits for the different populations and cycles, and the significant interaction effects between populations with cycles. The genetic gain was GP3<GP5<GP4in kernel depth and GP3> GP5>GP4 in rows per ear. After 4 cycles of mass selection, there was an obvious increase in the mean kernel depth and rows per ear, which displayed significant direct responses. Plant height and ear height exhibited an increase with selection, and the increase in GP4 was significantly higher than that in GP3 and GP5. The genetic gain of GP4 in yield per plant and ear diameter was higher than that of GP3 and GP5. Compared the cycle C4 with C0, most yield traits were improved for all the populations, which implied asignificant correlated response. Excluding plant height and ear height, the differences in GCA were significant for the other traits. The GCA effects of GP5 in most yield traits were higher than those of GP3 and GP4. The population improvement by mass selection resulted in an increase in the GCA effects of most yield traits. Most test-cross combinations, with more than 8% of yield per plant over the check, were derived from the cycle C4 of all the populations, which displayed significant indirect responses to mass selection. For the coefficients of variation in phenotypic traits, there were no obvious changes. For the genetic similarity coefficients of intrapopulation, there were a gradual increase in the derivatives of GP3 and GP4 and no changes in those of GP5. The genotype number in the derivatives of GP3 and GP4 showed a decreasing tendency while a little increases in those of GP5. The results above indicated that populations might be improved effectively and retained a high genetic diversity by mass selection. However, there existed different effects of genetic improvement on different populations and traits.

Key words: Maize, Population improvement, Response to selection, Genetic diversity, SSR markers

[1] Liu J-L(刘纪麟). Maize Breeding (玉米育种学). Beijing: China Agriculture Press, 2002. pp 201-220 (in Chinese)

[2] Zhang S-H(张世煌), Bai L(白丽), Guo Z(郭珍), Shi D-Q(石德权). Tendency of corn breeding research. Crops (作物杂志), 1997, (5): 5-8(in Chinese)

[3] Wang Y-B(王懿波), Wang Z-H(王振华), Wang Y-P(王永普), Zhang X(张新), Lu L-X(陆利行), Tian Z-Y(田曾元). The Improvement of principal maize germplasms and utilization of heterosis models in China. J Maize Sci (玉米科学), 1999, 7(1): 1-8 (in Chinese with English abstract)

[4] Zhang Q-J(张前进), Wang Z-H(王振华), Zhang X(张新), Wang J-P(王俊璞). Innovative and utilization of maize germplasm resources. J Henan Agric Sci (河南农业科学), 2006, (4): 28-31 (in Chinese)

[5] Rong T-Z(荣廷昭), Li W-C(李晚忱), Yang K-C(杨克诚), Zhang B(张彪), Zhang S-K(张述宽), Tang H-J(唐洪军), Fan X-M(番兴明). Maize Breeding of Southwest Ecological Regions (西南生态区玉米育种). Beijing: China Agriculture Press, 2003. pp 249-250 (in Chinese)

[6] Lu B-H(卢宝红), Zhang Y-R(张义荣), Wei L-M(魏良明), Du R-S(杜如珊), Liu H-W(刘华伟), Li J-S(李建生). Application of near-infrared reflectance spectroscopy in recurrent selection of maize. J Shanxi Agric Sci (山西农业科学), 2005, 33(2): 28-31 (in Chinese with English abstract)

[7] Genter C.F. Mass selection in a composite of intercrosses of Mexican races of maize. Crop Sci, 1976, 16: 556-558

[8] Chen Y-H(陈彦惠), Zhang C-Z(张传贞), Gao S-L(高素玲). Effect of mass selection on population improvement of maize. J Henan Agric Univ (河南农业大学学报), 1994, 28(4): 379-383 (in Chinese with English abstract)

[9] Peng Z-B(彭泽斌), Liu X-Z(刘新芝). Evaluation of mass selection VS. modified S1 line recurrent selection in maize population Zhongzong No.3. Sci Agric Sin (中国农业科学), 1993, 26(1): 22-31 (in Chinese with English abstract)

[10] Zhang R-H(张仁和), Xue J-Q(薛吉全), Mao J-C(毛建昌), Li F-Y(李凤艳), Ma G-S(马国胜). Study on genetic markers and germplasm resources in maize. J Maize Sci (玉米科学), 2005, 13(3): 14-16 (in Chinese with English abstract)

[11] Wang T-G(王铁固), Ku L-X(库丽霞), Chen Y-H(陈彦惠), Wu L-C(吴连成), Hou B-J(侯本军). Analysis of genetic variability of maize population by SSR. J Huabei Agric Sci (华北农学报), 2005, 20(5): 13-16 (in Chinese with English abstract)

[12] Hang S-H(黄素华), Teng W-T(滕文涛), Wang Y-J(王玉娟), Dai J-R(戴景瑞). Genetic diversity analysis of maize recurrent selection populations by SSR marker. Acta Genet Sin (遗传学报), 2004, 31(1): 73-80 (in Chinese with English abstract)

[13] Zhang J-H(张建辉), Rong T-Z(荣廷昭), Pan G-T(潘光堂), Yang K-C(杨克诚). Breeding potentiality of major traits for five synthesized corn populations. Acta Agron Sin (作物学报), 2006, 32(2): 273-277 (in Chinese with English abstract)

[14] Xia X C, Reif J C, Melchinger A E, Frish M, Hoising D A, Beck D, Pixley K, Warburton M L. Genetic diversity among CIMMYT maize inbred lines investigated with SSR marker: II. Suptropica1, tropical midaltitude, and highland maize inbred lines and their relationships with elite U. S. and European maize. Crop Sci, 2005, 45: 2573-2582

[15] Xin J-S(辛景树). DNA Fingerprint of Maize Hybrids (杂交玉米品种DNA指纹图谱). Beijing: China Agricultural Science and Technology Press, 2004. pp 194-196 (in Chinese)

[16] Nei M, Li W H. Mathemacal model for studying genetic variation in terms of restriction endonucleases. Proc Nat Acad Sci USA, 1979, 76: 5256-5273

[17] Peng Z-B(彭泽斌), Zhang S-H(张世煌). Problems and strategies in maize population improvement. Sci Agric Sin (中国农业科学), 2000, 33(suppl): 27-33 (in Chinese with English abstract)

[18] Jenkins M T. Maize breeding during the development and early years of hybrid maize. New York: John Wiley and Sons, 1978

[19] Liu M-Z(刘美洲), Liang X-L(梁晓玲), Cao L-P(曹连莆), Abula A(阿布来提·阿布拉), Li M-D(李铭东), Han D-X(韩登旭), Shao H-Y(邵红雨). Genetic analysis of quantitative characters of Yedan 13 in Xinjiang environment. Xinjiang Agric Sci (新疆农业科学), 2008, 45(6): 1024-1027 (in Chinese with English abstract)

[20] Chen F-B(陈发波), Yang K-C(杨克诚), Rong T-Z(荣廷昭), Pan G-T(潘光堂). Studies on major characters of maize hybrids in the regional tests of Sichuan and Southwest China and the countermeasures for maize breeding. J Maize Sci (玉米科学), 2007, 15(4): 41-45 (in Chinese with English abstract)

[21] Shi C-Q(时成俏), Wang B-W(王兵伟), Huang A-X(黄安霞), Qin Y-Y(覃永嫒), Qin D-B(覃德斌). The effect analysis on main quantitative characters and yield of maize in the Karst Geomorphy area. Chin Agric Sci Bull (中国农学通报), 2008, 24(5): 204-207 (in Chinese with English abstract)
Shen X-F(沈雪芳), Wang Y-F(王义发), Zheng H-J(郑洪建), Liu K(刘康), Lou J-F(楼坚锋), Zhang J-M(张建明), Lu Y-M(陆永明), Hou G-B(侯根宝). Analysis of combining ability of yield traits of table waxy corn. Acta Agric Shanghai (上海农业学报), 2008, 24(2): 50-53 (in Chinese with English abstract)
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[11] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[12] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[13] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[14] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[15] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!