欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (07): 1169-1175.doi: 10.3724/SP.J.1006.2010.01169

• 耕作栽培·生理生化 • 上一篇    下一篇

转小麦铁蛋白基因酵母的抗氧化活性

赵永亮1,2,陈静1,王丹1,王卫国1,李云辉1   

  1. 1河南工业大学生物工程学院,河南郑州450001;2中国农业科学院作物科学研究所农业部品种资源重点实验室/农作大科学工程,北京100081
  • 收稿日期:2009-12-17 修回日期:2010-03-19 出版日期:2010-07-12 网络出版日期:2010-04-28
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2004CB117200)和河南工业大学博士基金项目(150216)资助。

Antioxidative Activities of Transgenic Yeast with Ferritin Gene from Wheat

ZHAO Yong-Liang1,2,CHEN Jing1,WANG Dan1,WANG Wei-Guo1, LI Yun-Hui1   

  1. 1Department of Biology Engineering,Henan University of Technology,Zhengzhou,45001,China;2The National Key Facility for Crop Gene Resources and Genetic Improvement,Key Laboratory of Crop Germplasm and Biotechnology,Ministry of Agriculture,Institute of Crop Sciences,Chinese Academy of Agricultural Sciencses,Beijing 100081.China
  • Received:2009-12-17 Revised:2010-03-19 Published:2010-07-12 Published online:2010-04-28

摘要: 铁蛋白是广泛存在于动、植物和微生物中的储铁关键蛋白,具有调节铁代谢平衡、消除亚铁离子引起的氧化毒性等作用。本研究克隆了小麦铁蛋白基因,构建其真核表达载体,经筛选、检测得到具有形成活性小麦铁蛋白多聚体能力的转基因酵母。转基因酵母与转空载体的对照酵母相比不仅可有效清除过氧化氢(H2O2),而且还具清除羟自由基(.OH)和超氧阴离子(O2?)的能力;×OH、O2?和H2O2对转基因酵母的半致死浓度(LD50)分别为0.40、1.00和36.91 mmol L-1,比对照酵母分别提高了37.93%、47.06%和77.03%。不同浓度转基因酵母对×OH、O2?和H2O2清除能力的回归方程分别为一元三次多项式、对数方程和负指数方程。说明小麦铁蛋白基因的真核表达产物可以有效清除3种活性氧,而且具有较为复杂的互不相同的作用机制。

关键词: 小麦, 铁蛋白, 转基因酵母, 抗氧化活性

Abstract: Ferritin, a key protein to store iron, is widely distributed in animal, plant, and microbe. Ferritin can regulate the balance in iron metabolism and decrease the oxidative damage caused by ferrous ion. It is generally recognized that the antioxidant activity of ferritin is mainly caused by integrating ferrous ion among cells, and thereby decreasing the generation of Fenton reaction. In addition to the antioxidant pathway against hydrogen peroxide (H2O2), less information is available on other antioxidative pathways and mechanism of ferritin. In this study, a ferritin gene was cloned from wheat (Triticum aestivum L.), and its expression vehicle of eukaryotic cell was constructed and transformed into yeast (Saccharomyces cerevisiae). Compared with the control yeasts, the transgenic yeasts were able to scavenge H2O2,O2?and ·OH effectively. The half lethal density (LD50) of transgenic yeasts induced by the three types of active oxygen (·OH, O2?and H2O2) was 0.40, 1.00, and 36.91 mmol L-1, which increasedby37.93%, 47.06%, and 77.03% compared with the control respectively. The abilities for eliminating ·OH, O2?, and H2O2 of the trsnsgenic yeast per unit concentiation were quantitated with cubic polynomial, logarithmic, and negative exponential equations based on yeast concentration respectively. These results demonstrated that expressed products of wheat ferritin gene in eukaryotic orgamism can effectivly in eliminate various types of active oxygen with different and complex mechanisms.

Key words: Wheat, Ferritin, Trangenic yeast, Antioxdative activity

[1]    Zheng Y-L(郑荣梁), Huang Z-Y(黄中洋). Free Radical Biology (自由基生物学), 3rd edn. Beijing: Higher Education Press, 2007. pp 1–25 (in Chinese)
[2]    Blokhina O, Virolatinen E, Kurt V F. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot, 2003, 91: 179–194
[3]    Theil E C, Matzapetakis M, Liu X. Ferritins: Iron/oxygen biominerals in protein nanocages. J Biol Inorg Chem, 2006, 11, 803–810
[4]    Harrison P M, Arosio P. Ferritins: molecular properties, iron storage function and cellular regulation.  Biochim Biophys Acta,1996, 1275: 161–203
[5]    Theil, E C. Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu Rev Biochem, 1987, 56: 289–315
[6]    Wade V J, Treffry A, Laulhere J P, Bauminger E R, Cleton M I, Mann S, Briat J F, Harrison P M. Structure and composition of ferritin cores from pea seed (Pisum sativum). Biochim Biophys Acta, 1993, 1161: 91–96
[7]    Goto F, Yoshihara T, Saiki H, Takaiwa F. Iron accumulation and enhanced growth in transgenic lettuce plants expressing the iron-binding protein ferritin. Theor Appl Genet,2000, 100: 658–664
[8]    Ye X(叶霞), Huang X-D(黄晓德张振).Agrobacterium-mediated transformation of tomato with PvFer. Acta Hort Sin (园艺学报), 2007, 34(2): 489–492 (in Chinese with English abstract)), Yao H-Q(姚泉洪), Zhang Z(
[9]    Ye H X, Li M, Guo Z J. Evaluation and application of two high-Iron transgenic rice lines expressing a pea ferritin gene. Rice Sci, 2008, 15: 51–56
[10] Deak M, Horvath G V, Davletova S, Torok K, Sass L, Vass I, Barna B, Kiraly Z, Dudits D. Plants ectopically expressing the iron-binding protein, ferritin, are tolerant to oxidative damage and pathogens. Nat Biotechnol, 1999, 17: 192–196
[11] Hegedus A, Janda T, Horváth G VDudits D. Accumulation of overproduced ferritin in the chloroplast provides protection against photoinhibition induced by low temperature in tobacco plants. J Plant Physiol, 2008, 165: 1647–1651,
[12] Halliwell B, Gutteridge J M. Protection against oxidants in biological systems: the superoxide theory of oxygen toxicity. In: Free Radicals in Biology and Medicine. New York: Oxford University Press, 1989. pp 86–179
[13] Balla G, Jacob H S, Balla J, Rosenberg M, Nath K, Apple F, Eaton J W, Vercellotti G M. Ferritin: a cytoprotective antioxidant strategem of endothelium. J Biol Chem, 1992, 267: 18148–18153
[14] Baldi A, Lombardi D, Russo P ,Palescandolo Ferritin contributes to melanoma progression by modulating cell growth and sensitivity to oxidative stress., 2005, 11: 3175–3183 E, Luca A D, Santini D, Baldi F, Rossiello L, Dellanna M L, Mastrofrancesco A, Maresca V, Flori E, Natali P G, Picardo Mauro, Pagg M G.Clin Cancer Res
[15] Pham C G Papa S, Jones J, Alvarez K, Jayawardena S, Smaele D E, Cong R, Beaumont C. Ferritin heavy chain upregulation by NF-kappaB inhibits TNF alpha-induced apoptosis by suppressing reactive oxygen species. , 2004, 119: 529, Bubici C, Zazzeroni F,Cell–542
[16] Ravet K, Touraine B, Boucherez J, Briat J F, Gaymard F, Cellier F. Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis. Plant J, 2009, 57: 400–412
[17] Kim H J, Kim H M, Kim J H, Ryu K S, Park S M, Jahng K Y, Yang M K, Kim D H. Expression of heteropolymeric ferritin improves iron storage in Saccharomyces cerevisiae. Appl Environ Microbiol, 2003, 69: 1999–2005
[18] Shin Y M, Kwon T H, Kim K S, Chae K S, Kim D H, Kim J H, Yang M S.Enhanced iron uptake of Saccharomyces cerevisiae by heterologous expression of a tadpole ferritin gene. Appl Environ Microbiol, 2001, 67: 1280–1283
[19] Campanella A, Isaya G, O’Neill H A, Santambrogio P, Cozzi A, Arosio P, Levi Sonia. The expression of human mitochondrial ferritin rescues respiratory function in frataxin-deficient yeast. Human Mol Genet, 2004, 13: 2279–2288
[20] Zhao Y-L(赵永亮), Zhou R-H(周荣华), Jia J-Z(贾继增). The homologous cloning of the ferritin gene from wheat. J Triticeae Crops (麦类作物学报), 2008, 28(1): 25–30 (in Chinese with English abstract)
[21] Schiestl R H, Gietz R D. High efficiency transformation of intact yeast cells using single stranded DNA as a carrier. Currt Genet, 1989, 16: 339–346
[22] Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227: 680–685
[23] Barcelo F, Arean C O, Moore G R. Isolation and preliminary characterization of ferritin from clover seeds. BioMetals, 1995, 8: 47–52
[24] Bradford M M. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem, 1976, 72: 248–254
[25] Jin M(金鸣), Cai Y-X(蔡亚欣), Li J-R(李金荣), Zhao H(赵辉). 1,10-phenanthroline-Fe(2+) oxidative assay of hydroxyl radical produced by H2O2/Fe(2+). Prog Biochem Biophys (生物化学与生物物理进展), 1996, 23(6): 553–555 (in Chinese with English abstract)
[26] Marlund S, Marlund G. Involvement of superoxide anion radicals in the autoxidation of pyrogallol and a convininent assay for superoxide dismutase. Eur J Biochem,1974, 47: 469–471
[27] Zhang H-R(张海容). Study of the scavenging radical activities of polysaccharide of hippophae rhamnosides fruit peel. Bull Bot (植物学通报), 2005, 22(6): 703–707 (in Chinese with English abstract)
[28] Cai H-J(蔡华静), Xiong Z-Q(熊智强), Tu G-Q(涂国全). A preliminary study on the antibacterial action of the bioactive compound produced by streptomyces 702. Acta Agric Univ Jiangxiensis (江西农业大学学报), 2005, 27(2): 274–278 (in Chinese with English abstract)
[29] Wang Y-H(王义华), Xu M-Z(徐梅珍), Jiang P(江萍), He Z-F(何照范), Xiong L-Y(熊绿芸).Purification, chemical component and antioxidative analysis of polysaccharide from Saccharomyces cerevisiae.Microbiology (微生物学通报), 2003, 30(4): 51–53 (in Chinese with English abstract)
[30] Sheng W(盛玮).Study on glutathione peroxidese activity in yeast.J Huaibei Ind Teachers Coll (淮北煤炭师范学院学报), 2003, 24(1): 40–43 (in Chinese with English abstract)
[31] Lin Z-L(林稚兰), Hao F-Y(郝福英), Wang L(王龙), Jia L(贾乐), Tian F(田枫), Li Q(李奇). Study on antioxidation of Saccharomyces cerevisiae Cu-metallothionein. Mycosystema (菌物学报), 1997, 15(4): 291–296 (in Chinese with English abstract) Zhang K-S(张坤生), Zhang L(张亮), Lü X-L(吕晓玲), Chen X-J(陈晓娟). The study on antioxidant activity of Rhodotorular glutinis pigment. Food Sci(食品科学), 2004, 25(3): 61–63 (in Chinese with English abstract)
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!