欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (12): 2116-2123.doi: 10.3724/SP.J.1006.2010.02116

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦品系M8003-5抗条锈病基因遗传分析和分子作图

徐中青1,张书英1,王睿1,王文立1,周新力1,尹军良1,陈洁2,井金学1,*   

  1. 1 西北农林科技大学植保学院 / 陕西省农业分子生物学重点实验室,陕西杨凌 712100;2 河北省农林科学院植物保护研究所,河北保定 071000
  • 收稿日期:2010-03-16 修回日期:2010-05-21 出版日期:2010-12-12 网络出版日期:2010-08-30
  • 通讯作者: 井金学, E-mail: jingjinxue@163.com, Tel: 029-87092434
  • 基金资助:

    本研究由教育部高等学校学科创新引智计划(111计划)项目(B07049), “十一五”国家支撑计划重点项目(2006BAD08A05)和小麦条锈病菌毒性变异与条锈病综合治理研究示范项目(200903035-02)资助。

Genetic Analysis and Molecular Mapping of Stripe Rust Resistance Gene in Wheat Line M8003-5

XU Zhong-Qing1,ZHANG Shu-Ying1,WANG Rui1,WANG Wen-Li1,ZHOU Xin-Li1,Chen Jie2,JING Jin-Xue1,*   

  1. 1 College of Plant Protection / Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, China; 2Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China
  • Received:2010-03-16 Revised:2010-05-21 Published:2010-12-12 Published online:2010-08-30
  • Contact: JING Jin-Xue,E-mail:jingjinxue@163.com,Tel:029-87092434

摘要: 为了利用小麦抗条锈病品系M8003-5中的抗病基因,用当前7个流行的条锈菌生理小种对小麦品系M8003-5的抗条锈性进行了鉴定,发现该品种对当前的各优势小种均有良好抗性。在温室内以病菌小种Su11-4对M8003-5在进行苗期抗条锈性鉴定和遗传分析,初步确定M8003-5对Su11-4的抗性由1对显性基因控制,位于7DS上的SSR标记Xbarc5、Xwmc463、Xwmc405、Xbarc126、Xgwm295、Xgwm44、Xwmc702、Xwmc438、Xwmc121、Xgwm111Xbarc121与该基因连锁,最近的为Xwmc702Xwmc438,遗传距离分别为3.5 cM和4.3 cM。分子标记及其相关分析表明,此基因可能来自黑麦,与已定位于7D染色体上的抗病基因不同,暂命名为YrM8003。利用与其紧密连锁的标记Xwmc702Xwmc438测黄淮麦区43个主栽品种,结果显示,有20%的品种具有与YrM8003基因相同的标记位点。这一结果有助于YrM8003在抗条锈病育种的应用。

关键词: 小麦品系M8003-5, 条锈病抗性, 遗传分析, SSR, 分子标记辅助选择

Abstract: Strip rust, caused by Puccinia striiformis West. f. sp. tritici (Pst) is a worldwide disease in wheat (Triticum aestivum L.) production. Resistance breeding is constantly pursued for decades to tackle the variations of prevalent Pst races. Wheat genetic resources carrying novel resistance genes always receive great attentions and the utilization study generally initiates from the identification and genetic analysis of the resistance genes. Wheat line M8003-5 is selected from the hybrid progenies of the common wheat variety Chinese Spring and Secale cereale L., which exhibits not only high resistance to Pst but also high yield, early maturity, and resistance to drought. To map the Pst resistance gene(s) in M8003-5, a segregation population was constructed by crossing M8003-5 and a highly susceptible variety Mingxian 169. Seven prevalent Pst races in China were inoculated in greenhouse at seedling stage to evaluate the infection type of individuals from the F1, F2, and F3 generations. The results showed that M8003-5 was resistant to all races, whereas Mingxian 169 was highly susceptible to all inoculates. Genetic analysis indicated that the resistance of M8003-5 against race Su11-4 was conferred by a dominant gene, which was tentatively designated YrM8003. This gene was linked to simple sequence repeat (SSR) markers Xbarc5, Xwmc463, Xwmc405, Xbarc126, Xgwm295, Xgwm44, Xwmc702, Xwmc438, Xwmc121, Xgwm111, and Xbarc128, which were all located on chromosome arm 7DS. The closest flanking makers were Xwmc702 and Xwmc438 with genetic distance of 3.5cM and 4.3 cM, respectively. Gene YrM8003 differs from any other Pst resistance genes on 7DS, and is probably a novel gene. This gene is primarily inferred to originate fromS. cereale based on analyses on pedigree and molecular markers data. Forty-three wheat cultivars from Huang-Huai Winter Wheat Region were also tested with YrM8003 markers Xwmc702 and Xwmc438, and 20% cultivars were amplified with the target bands. These cultivars require further tests to validate the presence of YrM8003.

Key words: M8003-5, Stripe rust resistance, Genetic analysis, SSR marker, Molecular marker-assisted selection

[1]Li Z-Q(李振岐), Zeng S-M(曾士迈). Wheat Rust in China (中国小麦条锈). Beijing: China Agriculture Press, 2002. pp 41–50 (in Chinese)
[2]Wan A-M(万安民), Niu Y-C(牛永春), Wu L-R(吴立人), Yuan W-H(袁文焕), Li G-B(李高宝), Jia Q-Z(贾秋珍), Jin S-L(金社林), Yang J-X(杨家秀), Li X-F(李艳芳), Bi Y-Q(毕云清). Physiology specialization of stripe rust of wheat in China during 1991–1996. Acta Phytopathol Sin (植物病理学报), 1999, 29(1): 15–20 (in Chinese with English abstract)
[3]Yang L-M(杨作民), Tang B-R(唐伯让), Shen K-Q(沈克全), Xia X-C(夏先春). A strategic problem in wheat resistance breeding-building and utilization of sources of second-line resistance against rust and mild in China. Acta Agron Sin (作物学报), 1994, 12(7): 385–394 (in Chinese with English abstract)
[4]Wan A-M(万安民), Wu L- R(吴立人), Jia Q-Z(贾秋珍), Jin S-L(金社林), Wang B-T(王保通), Yao G(姚革), Yang J-X(杨家秀), Yuan Z-Y(原宗英), Bi Y-Q(毕云清). Pathogenic changes of stripe rust fungus of wheat in China during 1997–2001. Acta Phytopathol Sin (植物病理学报), 2003, 33(3): 261–266 (in Chinese with English abstract)
[5]Yang Z-M(杨作民), Xie C-J(解超杰), Sun Q-X(孙其信). Situation of the sources of stripe rust resistance of wheat in the post CY32 era in China. Acta Agron Sin (作物学报), 2003, 29(2): 161–168 (in Chinese with English abstract)
[6]He J-B(何家泌). Inheritance of wheat rust resistance and its breeding. Sci Agric Sin (中国农业科学), 1980, 23(4): 106–109 (in Chinese with English abstract)
[7]Wu J-H(吴金华), Ji W-Q(吉万全), Wang C-Y(王长有), Li F-Z(李凤珍). Identification of wheat-rye addition lines resistant to powdery mildew. Chin Agric Sci Bull (中国农学通报), 2005, 10(10): 279–281 (in Chinese with English abstract)
[8]Li Z-S(李振声), Rong S(容珊), Zhong G-C(钟冠昌). Distant Hybridization in Wheat (小麦远源杂交). Beijing: Science Press, 1985. pp 84–129 (in Chinese)
[9]Friebe B, Jiaag J, Raupp W J. Characterization of wheat-alien translocations conferring resistance to diseases and pests: Current status. Euphytica, 1996, 91: 58–87
[10]Smith E L, Sebesta E E. The transfer of greenbug resistance from rye to wheat. In: Proceedings of the 6th International Wheat Genetics Symposium, 1980. pp 79–90
[11]Wang L-S(王林生), Chen P-D(陈佩度). Inducement of alien translocation lines and its utility in crop breeding in Triticum aestivum. Bull Biol (生物学通报), 2007, 42(2): 9–11 (in Chinese with English abstract)
[12]Xue X-Z(薛秀庄). Wheat Chromosome Engineering and Breeding (小麦染色体工程和育种). Shijiazhuang: Heibei Science and Technology Press, 1989. pp 115–118 (in Chinese)
[13]Li Z-Q(李振岐), Shang H-S(商鸿生). Wheat Stripe Rust and Its Controlling Strategies (小麦条锈病防治策略). Shanghai: Shanghai Scientific and Technical Publishers, 1989. p 214 (in Chinese)
[14]Li Z-Q(李振岐), Zeng S-M(曾士迈). Wheat Rust in China (中国小麦条锈). Beijing: China Agriculture Press, 2002 (in Chinese)
[15]Liu X-K(刘孝坤). A preliminary study on the inheritance of resistance to stripe rust in wheat. Acta Phytophylacica Sin (植物保护学报), 1988, 15(1): 33–39 (in Chinese with English abstract)
[16]He J-B(何家泌). Inheritance of Resistance to Plant Disease (病害抗病遗传). Beijing: China Agriculture Press, 1994. pp 215–222 (in Chinese)
[17]Rogers S O, Bendich A J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol, 1985, 5: 69–76
[18]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease resistance genes by bulked sergeant analysis: A rapid method to detect markers in specific genomic regions by using segregating segregation populations. In: Proceedings of the National Academy of Sciences of the United States of America, San Diego, USA. 1991, Vol. 88, pp 9828–9832
[19]Liu R-H(刘仁虎), Meng J-L(孟金陵). MapDraw: a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas (遗传), 2003, 25(3): 317–321 (in Chinese with English abstract)
[20]Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L). Theor Appl Genet, 2004, 109: 1105–1114
[21]Cao Z-J(曹张军), Wang M-N(王美南), Jing J-X(井金学).The progress of resistance to stripe rust in wheat. J Triticeae Crops (麦类作物学报), 2001, 21(3): 80–83 (in Chinese with English abstract)
[22]Autrique J E. RFLP mapping of genes associated with different agronomic traits and disease resistance in wheat. In: Abstract of International Plant Gene III, San Diego, USA
[23]Nazari K, Wellings C R. Genetic analysis of seedling stripe rust resistance in the ustralian wheat cultivar ‘Batavia’. J Plant Genet Resour, 2002, 3(4): 102
[24]Zhang H-Q(张海泉), Jia J-Z(贾继增), Yang H(杨虹), Zhang B-S(张宝石). Genetic analysis and SSR mapping of stripe rust resistant genes from Aegilops tauschii. Heredity (遗传), 2008, 30(3): 491–494 (in Chinese with English abstract)
[25]Li G Q, Li Z F, Yang W Y. Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26. Theor Appl Genet, 2006, 112: 1434−1340
[26]Spielmeyer W , McIntosh R A,Kolmer J, Lagudah E S. Powdery mildew resistance and Lr34/Yr18 genes for durable resistance toleaf and stripe rust cosegregate at a locus on the short aim ofchromosome 7D of wheat. Theor Appl Genet,2005:731-735
[27]Ren Z-L(任志龙), Zhang H(张宏), Wang K-F(王康峰), Wang Y-J(王亚娟), Cai D-M(蔡东明), Ji W-Q(吉万全), Song Y-L(宋玉莲). Development of wheat germplasm with disease resistance-Yuanfeng 139. Chin Agric Sci Bull (中国农学通报), 2006, 22(7): 228−231 (in Chinese with English abstract)
[28]Ren Z-L(任志龙), Ji W-Q(吉万全), Zhang H(张宏). The high yield and resistant disease wheat line Shaan 139. China Seed Ind (中国种业). 2007, (5): 73 (in Chinese)
[29]Jing J-X(井金学), Xu Z-B(徐智斌), Wang D-B(王殿波), Wang M-A(王美南), Yao Q-Y(姚秋燕), Shang H-S(商鸿生), Li Z-Q(李振岐). Genetic analysis of gene conferring resistance tostripe rust in Xiaoyan 6. Sci Agric Sin (中国农业科学), 2007, 40(3): 499–504 (in Chinese with English abstract)
[30]Zhuang Q-S(庄巧生). Chinese Wheat Improvement and Pedigree Analysis (小麦发展和育种分析). Beijing: China Agriculture Press, 2003 (in Chinese)
[31]Jin S-B(金善宝). Wheat Varieties in China and Their Pedigrees (中国小麦品种及其系谱). Beijing: Agriculture Press, 1983 (in Chinese)
[32]Li L-Z(李兰真), Yang H-W(杨会武), Zhao H-J(赵会杰). Super high-yielding, disease resistant, cold tolerant and broad adaptation new wheat variety “Yu nong 949”. Bull Agric Scin Technol (农业科技通讯), 2006, (4): 67–71 (in Chinese)
[33]Wen H-J(温辉芹), Zhang L-S(张立生), Cheng T-L(程天灵), Li S-H(李生海). Breeding practice and experience of the new strong gluten wheat variety of national authorized Jintai 170. J Shanxi Agric Sci (山西农业科学). 2008, 36(9): 15–20 (in Chinese with English abstract)
[1] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[2] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[3] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[4] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[5] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[6] 江建华, 张武汉, 党小景, 荣慧, 叶琴, 胡长敏, 张瑛, 何强, 王德正. 水稻核不育系柱头性状的主基因+多基因遗传分析[J]. 作物学报, 2021, 47(7): 1215-1227.
[7] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[8] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[9] 吴然然, 林云, 陈景斌, 薛晨晨, 袁星星, 闫强, 高营, 李灵慧, 张勤雪, 陈新. 绿豆雄性不育突变体msm2015-1的遗传学与细胞学分析[J]. 作物学报, 2021, 47(5): 860-868.
[10] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[11] 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293.
[12] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[13] 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090.
[14] 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93.
[15] 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!